Proposed Well Profile - Geodetic Report

Survey / DLS Computation Method:
- Minimum Curvature / Lubinski
- Vertical Section Azimuth: 298.25°
- Vertical Section Origin: N 0.000 ft, E 0.000 ft
- TVD Reference Datum: Rotary Bushing
- TVD Reference Elevation: 125.0 ft relative to MSL
- Sea Bed / Ground Level Elevation: -232.0 ft relative to MSL
- Magnetic Declination: 3.69°
- Total Field Strength: 4751.282 nT
- Magnetic Dip: 55.06°

Grid Coordinate System:
- NAD27 Texas State Plane, South Central Zone, US Feet
- Grid Coordinate System: NAD83 State Plane, South Central Zone, US Feet
- Grid Convergence Angle: +2.49°
- Grid Scale Factor: 0.999926

Grid Coordinates - Geographic Coordinates

<table>
<thead>
<tr>
<th>Grid ID</th>
<th>Grid Northing (ft)</th>
<th>Grid Easting (ft)</th>
<th>Grid Latitute</th>
<th>Grid Longitude</th>
<th>FSL (ft)</th>
<th>FWL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST. PT. Begin 4'/100'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3794.48</td>
<td>67.14</td>
<td>297.00</td>
<td>314.31</td>
<td>1352.17</td>
<td>87.55</td>
<td>-1127.89</td>
</tr>
<tr>
<td>3800.00</td>
<td>67.91</td>
<td>297.20</td>
<td>314.46</td>
<td>1357.21</td>
<td>87.86</td>
<td>-1172.42</td>
</tr>
<tr>
<td>3900.00</td>
<td>84.79</td>
<td>300.84</td>
<td>316.30</td>
<td>1447.15</td>
<td>91.11</td>
<td>-1212.23</td>
</tr>
<tr>
<td>4000.00</td>
<td>62.65</td>
<td>304.61</td>
<td>322.89</td>
<td>1534.32</td>
<td>966.54</td>
<td>-1287.66</td>
</tr>
<tr>
<td>4100.00</td>
<td>60.62</td>
<td>308.52</td>
<td>327.62</td>
<td>1616.30</td>
<td>1018.92</td>
<td>-1358.32</td>
</tr>
</tbody>
</table>

Begin 58.35° Tangent						
4200.00	58.70	312.59	332.65	1698.09	1074.99	-1423.89
4219.19	58.35	313.39	333.86	1713.67	1086.15	-1435.65
4869.27	58.35	313.39	357.23	2053.30	1349.33	-1714.27
4700.00	58.57	311.97	358.91	2087.32	1367.13	-1733.52
4800.00	59.37	307.40	3640.48	2167.59	1421.82	-1799.44

Begin 4'/100' Build &						
4900.00	60.34	302.91	3690.71	2250.73	1471.58	-1870.12
5000.00	61.45	298.52	3739.37	2336.33	1516.17	-1945.22
5100.00	62.70	294.22	3766.21	2423.98	1555.38	-2024.57
5200.00	64.09	290.22	3851.03	2513.25	1589.02	-2107.18
5300.00	65.58	285.62	3873.54	2603.71	1616.91	-2193.26

5400.00	67.19	281.92	3914.81	2694.91	1638.92	-2282.17
5500.00	68.89	278.02	3951.02	2786.41	1654.96	-2373.49
5600.00	70.68	274.21	3985.58	2877.77	1664.93	-2466.78
5700.00	72.55	270.48	4017.12	2968.94	1688.79	-2581.57
5800.00	74.49	266.83	4044.49	3058.27	1706.52	-2657.42

5900.00	76.48	263.25	4070.56	3146.54	1728.13	-2753.84
6000.00	78.53	259.72	4062.20	3232.90	1643.67	-2850.37
6100.00	80.61	256.25	4110.31	3319.95	1623.19	-2948.54
6200.00	82.74	252.23	4155.00	3394.43	1615.86	-2975.00
6300.00	84.87	248.23	4190.00	3464.41	1615.96	-2977.81

TVD Reference Datum:
- Rotary Bushing

Location Data:
- A25ST1 Rev7, Site 25, Jan 24, 2001
- Grid Convergence Angle: +2.49°
- Grid Scale Factor: 0.999926

Variables:
- MD (ft)
- Incl (°)
- Azim (°)
- TVD (ft)
- VSD (ft)
- E-W (ft)
- DLS (ft)
- Northing (ft)
- Easting (ft)
- Latitude
- Longitude
- FSL (ft)
- FWL (ft)
<table>
<thead>
<tr>
<th>Station ID</th>
<th>MD (ft)</th>
<th>Incl (°)</th>
<th>Azim (°)</th>
<th>TVD (ft)</th>
<th>VSec (ft)</th>
<th>H/-S (ft)</th>
<th>El-W (ft)</th>
<th>DLS (ft)</th>
<th>Grid Coordinates</th>
<th>Geographic Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Northing (ftUS)</td>
<td>Easting (ftUS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>A-25ST1 Heel -3990ss</td>
<td>6129.75</td>
<td>81.24</td>
<td>255.23</td>
<td>4115.00</td>
<td>3341.44</td>
<td>1615.96</td>
<td>-2975.01</td>
<td>0.00</td>
<td>135398.41</td>
<td>3835747.24</td>
</tr>
<tr>
<td>A25ST1 Toe -4140ss</td>
<td>7114.82</td>
<td>81.24</td>
<td>255.23</td>
<td>4265.00</td>
<td>4148.40</td>
<td>1387.77</td>
<td>-3916.43</td>
<td>0.00</td>
<td>135148.19</td>
<td>3834805.74</td>
</tr>
<tr>
<td>PBHL/TD</td>
<td>7114.83</td>
<td>81.24</td>
<td>255.23</td>
<td>4265.00</td>
<td>4148.40</td>
<td>1387.76</td>
<td>-3916.44</td>
<td>0.00</td>
<td>135148.18</td>
<td>3834805.73</td>
</tr>
</tbody>
</table>

Survey Error Model: Wolff & deWardt 1.0000 sigma

Surveying Programme:

- MD From (ft)
 - 3794.48
 - 7114.83
- MD To (ft)
 - 7114.83
- EQU Freq
 - Act-Stns Anadri MWD
 - Act-Stns Anadri MWD (none assigned-default tool used)
<table>
<thead>
<tr>
<th>DIRECTIONAL LWD</th>
<th>OPEN HOLE LOGGING</th>
<th>DEPTH</th>
<th>CASING HOLE</th>
<th>CASING DETAILS</th>
<th>MUD WT. TYPE</th>
<th>HOLE DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity</td>
<td>None</td>
<td>None</td>
<td>PREVIOUSLY SET</td>
<td>588' 588'</td>
<td>21"</td>
<td><5°</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Mud Log Conventional</td>
<td>1.010' 1.010'</td>
<td>PREVIOUSLY SET</td>
<td>2.500' 2.600'</td>
<td>17-1/2"</td>
<td>47.14°</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Mud Log Conventional</td>
<td>None</td>
<td>PREVIOUSLY SET</td>
<td>4.135' 6.148'</td>
<td>9-7/8" x 12-1/4"</td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td>Mud Log Conventional</td>
<td>None</td>
<td>PREVIOUSLY SET</td>
<td>4.265' 7.130'</td>
<td>8-1/2" Run Open Hole</td>
<td>84.44°</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Mud Log Conventional</td>
<td>None</td>
<td>PREVIOUSLY SET</td>
<td>4.135' 6.148'</td>
<td>9-5/8", 47# P-110, BTC Production Casing</td>
<td>84.44°</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Mud Log Conventional</td>
<td>None</td>
<td>PREVIOUSLY SET</td>
<td>4.265' 7.130'</td>
<td>8-1/2" Open Hole Screens</td>
<td>FRAC = NA</td>
</tr>
</tbody>
</table>

Notes:
- **PREVIOUSLY SET** likely refers to previous casing placements.
- **TVD** (True Vertical Depth) and **MD** (Measured Depth) are listed for each casing section.
- **DP Sand at Shoe** indicates the depth of the sand at the shoe of the well.
- **Sand at Shoe** and **Sand** likely refer to sandstone formations or sand layers encountered during drilling.
- **Conventional Mud Log** could refer to conventional logging tools used to record data.
- **Mud Log** and **Mud DJ Log** are types of logs used to record data from the drilling fluids.
- **Open Hole** and **Open Holo** likely refer to open sections of the well where no casing is set.
- **FRAC** values indicate the formation factor for certain depths or stages of the well.
- **Drive Pipe** and **Conductor** are types of casing used in specific parts of the well.

Additional Details:
- **Lease:** OCS-G 2739
- **Area:** High Island A-339
- **Well:** A-26
- **Field:** High Island A-340
- **Surf. Loc:** 859.7' FNL and 4,526.71' FWL of High Island A-339
- **B. H. Loc:** 508.19' FSL and 609.93' FWL of High Island A-339
- **Engineer:** William D. Kruse
- **Rig:** Rowan Paris
- **WD:** 232'
Devon Energy Production Company, LP
High Island Block A-339 A-25 Sidetrack
OCS-G-2739
MMS Operating Statements
January 26, 2001

General:
All operations are to be conducted in a safe and professional manner. Maintain and practice complete pollution control. Promptly report any oil slicks, regardless of source and size.

Drilling Rig Selection:
Devon currently plans on using the Rowan Paris to drill and complete this well. The rig details and specifications are included.

Wellhead Equipment:
Cameron 24” Freelock Head with 13-3/8” SOW X 13-5/8” 5M flange on top.

1. Will run 9-5/8” casing and land in 13-3/8” starting head. Install 13-5/8” 5M X 11” 5M tubing head. Test void area to 2650 psi (50% of collapse of 9-5/8”) and then install rig BOP stack on top with 11” 5M X 13-5/8” 10M DSA.

Blowout Preventers and BOP Tests

1. 13-3/8” Surface Casing – Test BOP’s and all associated equipment to 250 psi low, 3500 psi high.

2. 9-5/8” Production/Intermediate Casing – Will land in 13-3/8” head above. Will install slips/seals and then install 11” 5M X 13-5/8” 5M tubing head and test same. Install rig 13-5/8” 10M BOP stack (using 13-5/8” 10M X 11” 5M DSA) and test BOP’s and all associated equipment to 250 psi low, 3500 psi high.

3. Note all BOP openings and closing, each drill, and all tests on the IADC and Devon reports.

Other Safety Equipment
Install and have in operation a degasser, adjustable choke, gas detector, and pit volume totalizer/flow show unit when well is spudded. A Gray inside BOP and TIW safety valve will be maintained on the rig floor in the open position at all times while
drilling operations are being conducted. These valves for all pipe sizes in use will be provided. A lower well control valve shall be used at the bottom of the top drive. Pump stroke counters or a trip tank will be maintained in good order and utilized for determining accurate mud volume to fill the hole during trips.

Mud Logging and Cuttings

Mud loggers will be utilized below surface casing.

Zone Protection Statement

Devon Energy Production Company, LP plans to protect all freshwater or hydrocarbon bearing zones with either a cement plug or cemented casing string as per Federal Register “30 CFR Part 250.112”.

Safe Drilling Margin

A safe drilling margin of 0.5 ppg will be maintained between the mud weight and the equivalent mud weight of the previous casing seat test. Drilling operations will be suspended when the safe drilling margin is not maintained.

Mud and Chemicals

Mud and mud engineering services will be furnished by M-I Drilling Fluids and drill in fluids and engineering services will be furnished by Tetra Technologies, Inc.

Crewboat and Terminal Loading

Devon’s dock at Intracoastal City, Louisiana will be used for crewboats and helicopter flights. Terminal loading will be at Rowan’s dock in Sabine Pass, Texas.

Drilling Reports

1. Two (2) legible copies of the IADC Daily Drilling Report must be forwarded to Devon’s Houston office.

2. Make a detail on the IADC Daily Drilling Report of all tubular goods used.

3. Send in morning reports to the Houston office between 06:00 and 06:30 a.m. each morning.

In Case of Emergency – Call

Dan Postler
Barney Gary
Houston, Texas
Houston, Texas
Devon Energy Production Company, LP
High Island Block A-339 A-25 Sidetrack
OCS-G-2739
DRILLING FLUIDS SUMMARY
January 26, 2001

A. Minimum Mud Quantities

<table>
<thead>
<tr>
<th>Depth Range (Feet - MD)</th>
<th>Hole Volume (Barrels)</th>
<th>Surface Volume (Barrels)</th>
<th>Totals</th>
<th>Barite (Sacks)</th>
<th>Gel (Sacks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' - 6,148'</td>
<td>406</td>
<td>517</td>
<td>1423</td>
<td>427</td>
<td>214</td>
</tr>
<tr>
<td>0' - 7,130'</td>
<td>434</td>
<td>69</td>
<td>1003</td>
<td>301</td>
<td>150</td>
</tr>
</tbody>
</table>

Initial Mud Weight = 10.0 ppg
Final Mud Weight = 10.5 ppg
(for 0.5 ppg weight up based on hole volumes)

B. Drilling Mud Additives

Devon plans to use water base to sidetrack the OCS-G 2739 A-25 well.
Mud additives which could be used during the drilling of this well are as follows:

- M-I GEL
- LIME
- CAUSTIC SODA
- XCD POLYMER
- SODIUM BICARBONATE
- POLYPLUS
- MIX-II
- TANNATHIN
- SPERSENE
- DESCO
- POLYPAC
- CAUSTIC POTASH (KOH)
- XP-20
- SHALE-CHEK
- MF-55
- SODA ASH
- LO-WATE
- DRIL-KLEEN
- LUBRI-GLIDE
- LUBE 167
- PAYZONE
- PAYZONE ACT
- TETRA D-11
- TETRA BIOPOL-L
- TETRA CMT-X
- TETRA PH-6
- CALCIUM CHLORIDE

C. Minimum Barite Requirements

Based on maximum mud weight of 10 ppg to weight up 0.5 ppg, need 42,780 lbs of barite or 428 sacks at 100# per sack.

Volume = 1426
MW2 = 10.5
MW1 = 10.0

PPB = Volume x (MW2 - MW1)/(35 - MW2)

PPB = 1470 x (10.5 - 10)/(35 - 10.5)

PPB = 30.00
Devon Energy Production Company, LP

RECOMMENDED MUD PROGRAM

Well: High Island Block A-339 A-25 Sidetrack

Field: High Island A-340

Remarks: Horizontal open hole well

Location: Surface: 859.70' FNL and 4,529.71' FWL (slot X) of High Island A-340

BHL: 508.19' FSL and 609.93' FWL of High Island A-339

<table>
<thead>
<tr>
<th>MD</th>
<th>Mud Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>Wt.</td>
</tr>
<tr>
<td>3600 - 6148</td>
<td>9.5-10.5</td>
</tr>
<tr>
<td>6148 - 7042</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Adjust fluid properties as hole conditions dictate. Keep 100 bbls spotting fluid at rig.

Pump LCM sweeps as needed while drilling depleted sands.

PROG BASED ON: Offset data and area experience.

CONTRACTOR: Rowan Paris

SERVICE COMPANY: M-I Drilling Fluids

DRILLING ENGINEER: William D. Kruse

DRILLING SUPERINTENDENT: Dan Postler