In Reply Refer To: FO-2-1

Mobil Producing Texas & New Mexico Inc.
Attention: Mr. R. J. Schweikhardt
Post Office Box 4100
The Woodlands, Texas 77387

Gentlemen:

Reference is made to your Initial Plan of Exploration received August 11, 1986, amended August 27, 1986, for Lease OCS-G 8207, Block 562, East Breaks Area. This plan includes the activities proposed for Wells A, B, and C.

In accordance with 30 CFR 250.34, revised December 13, 1979, and our letter dated January 29, 1979, this plan has been determined to be complete as of August 29, 1986, and is now being considered for approval.

Your plan control number is N-2543 and should be referenced in your communication and correspondence concerning this plan.

Sincerely yours,

D. J. Bourgeois
Regional Supervisor
Field Operations

bcc: Lease OCS-G 8207 (OPS-3-2) (FILE ROOM)
OPS-3-4 w/Public Info. Copy of the plan (PUBLIC RECORDS)

ADGobert: am: 8/27/86 Mobil Producing Texas & New Mexico Inc. OCS-G 8207

AUG 29 1986
August 22, 1986

U. S. Department of the Interior
Minerals Management Service
1420 South Clearview Parkway
New Orleans, Louisiana 70123-2394

Attention: Mr. Daniel Bourgeois
Regional Supervisor
Field Operations

Re: Amendment To
Plan of Exploration
OCS-G 8207, Block 562
East Breaks Area
Offshore, Texas

Gentlemen:

Attached please find nine copies of an Amendment to the Initial Plan of Exploration for OCS-G 8207, East Breaks Block 562. Four copies are for public information purposes; five contain confidential information, and are marked as such.

It was necessary to redraft the illustrations in Appendix B, Appendix C and Appendix D to reflect the correct location of Well No. C. With the amended illustrations, the text and Appendices will be consistent with one another.

If there are any further questions concerning this plan, please telephone the undersigned at (713) 871-5170.

Sincerely,

R. J. Schweikhardt
Environmental & Regulatory Manager

WAS:ss

a:w623419c.was
MOBIL PRODUCING TEXAS & NEW MEXICO INC.

AMENDMENT TO
PLAN OF EXPLORATION

OCS-G 8207, BLOCK 562

EAST BREAKS AREA

OFFSHORE, TEXAS

AUGUST 22, 1986
MOBIL OCS-G-8207

APPLICATION BY MOBIL OIL
JUNE, 1980
THE WOODLANDS, TEXAS

PROPOSED MINERAL DEVELOPMENT
EAST BREAKS AREA BLOCK 562
GULF OF MEXICO
Appendix D has been deleted from this copy because it's CONFIDENTIAL.
August 7, 1986

U. S. Department of the Interior
Minerals Management Service
1420 South Clearview Parkway
New Orleans, Louisiana 70123-2394

Attention: Mr. Daniel Bourgeois
Regional Supervisor
Field Operations

Re: Plan of Exploration
OCS-G 8207, Block 562
East Breaks Area
Offshore, Texas

Gentlemen:

Attached please find nine copies of the Initial Plan of Exploration for OCS-G 8207, East Breaks Block 562. Four copies are for public information purposes; five contain confidential information, and are marked as such.

Excluded from the public information copies are certain geologic discussion and depths of wells, and structure map.

A Shallow Hazards Survey Report for East Breaks Block 562 was transmitted to you with our letter of January 14, 1986.

OCS-G 8207 is one of the leases on which exploration has been held up by the lack of an NPDES discharge permit. As a result we do not anticipate drilling the lease until April 1, 1991. MPTM is in the process of requesting suspensions of operations on its leases adversely affected by the delay in issuance of the NPDES permit by EPA for oil and gas operations in the Gulf of Mexico. It has been ruled by the Director of MMS that a lease must have an approved POE to qualify for a suspension (MMS-85-0296-OCS). Therefore, even though drilling is not anticipated for some time, it is respectfully requested that this POE be considered for prompt approval.

If there are any questions concerning this Plan, please telephone the undersigned at (713) 363-5330.

Sincerely,

M. E. Sweeney
Environmental & Regulatory Manager

MSS:ss
a:w$621619b.mer
MOB. PRODUCING TEXAS & NEW MEXICO INC.

PLAN OF EXPLORATION

OCS-G 8207, BLOCK 562

EAST BREAKS AREA

OFFSHORE, TEXAS

AUGUST 7, 1986
Mobil Producing Texas & New Mexico Inc. (MPTM), as operator of OCS-G 8207, East Breaks Block 562, submits this Plan of Exploration pursuant to the requirements of 30 CFR 250.34.

This plan addresses the drilling of three exploratory wells, the first of which is expected to start April 1, 1991. The water depth on the lease varies from about 3120 feet to 3922 feet, and the wells would be drilled using a semi-submersible rig. The subject lease is located approximately 120 miles southeast of Freeport, Texas. The proposed locations of the wells are shown on the first page of the Appendix to this Plan.

MPTM is mindful of Lease Stipulation No. 3, which requires the operator to contact the Strategic Air Command concerning control of electromagnetic emissions and use of boats and aircraft in Military Warning Area W-602.

If commercial reserves are discovered by these exploratory wells, it would be MPTM's intention to develop those reserves in a timely manner.

A geologic hazards survey covering East Breaks Block 562 was performed in November 1985, and documented in a report dated January 10, 1986. Copies of the report were transmitted to your office with our letter of January 14, 1986.

The basic configuration of a semi-submersible rig is shown in the Appendix. Blowout preventers and related well control equipment will be installed, used, and tested in accordance with OCS Order No. 2. After cementing conductor pipe, a sub-sea BOP stack, riser, and diverter will be installed. See Appendix. All BOP systems will have a working pressure greater than the expected surface shut-in well pressure. In addition, an inside blowout preventer assembly and an essentially full-opening drill string safety valve, in the open position, will be maintained on the rig floor to fit all drill pipe in the drill string.

Pollution prevention control measures will be in accordance with OCS Order No. 7. MPTM has on file with the Minerals Management Service an Oil Spill Contingency Plan for the Gulf of Mexico. In the event of a spill, this plan will be actuated. The plan was filed with the USGS on December 27, 1977, approved January 5, 1978, amended March 25, 1985, and is by reference made a part of this document.
MPTM is a member of Clean Gulf Associates, which provides spill containment and clean-up equipment at five Halliburton Services bases on the Gulf Coast: Galveston and Rockport in Texas; Grand Isle, Venice and Intracoastal City in Louisiana. If a spill should occur from the proposed operations, the equipment located at Galveston would be utilized first, with additional equipment moved in from the other bases, if necessary. Response time to a spill would vary with the action required. Helicopter response, for the spraying of dispersants or collecting agents, would be two to four hours. Fast boat response with oil boom, skimmers, pump and storage tanks would require approximately 20-24 hours, including preparation time. A heavy equipment system response would require approximately 40-48 hours, including six hours preparation time.

Drill cuttings and excess drilling fluids will be disposed of in accordance with applicable environmental regulations. The drilling fluid components and additives to be used are listed in the Appendix.

All solid waste material, such as rubbish, galley waste, paper, etc., will be collected and transported to shore for proper disposal.

The estimated air emissions generated by the operation, assuming continuous drilling, is in the Appendix.

As mentioned above, the location of the proposed exploratory wells is approximately 120 miles southeast of Freeport, Texas. MPTM maintains a District Office at Freeport. Drilling activity will be supported from that office which provides a base for marine and helicopter service. It is estimated that four boat round trips and eighteen helicopter round trips per week between Freeport and the rig will be required during operations.
APPENDIX

A. Exploration Plan - Well Locations
B. Location of Lease Block Relative to Shore
C. Lease Block Map With Well Locations
D. Structure Map
E. Shallow Gas Hazard Statements
F. Typical Semi-Submersible Rig
G. Typical Diverter System
H. Blowout Prevention Equipment
I. Drilling Fluid Components and Additives
J. Air Emissions
TO: M. E. Sweeney

MPTM PLAN OF EXPLORATION
FOR OCS-G-8207
EAST BREAKS BLOCK 562

Exploration Plan

The evaluation of Block 562 calls for the drilling of three (3) wells. The planned locations for these wells are listed below.

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Surface Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4500' FSL & 500' FEL</td>
</tr>
<tr>
<td>B</td>
<td>3900' FSL & 2670' FEL</td>
</tr>
<tr>
<td>C</td>
<td>3580' FNL & 2200' FEL</td>
</tr>
</tbody>
</table>

Logging Program

A GR/\nuIL survey will be run at all casing points below surface casing, and at total depth. Other surveys will be run as deemed necessary for proper evaluation of the hole.

At least one set of drill cutting samples will be collected from the base of the surface casing to total depth.

G. J. Gail
Geological Manager

GJC/fhn
PROPOSED MINERAL DEVELOPMENT
EAST BREAKS AREA BLOCK 562
GULF OF MEXICO

APPLICATION BY
MOBIL OIL
THE WOODLANDS, TEXAS
JUNE, 1986

SCALE
PROPOSED LOCATION

EAST BREAKS AREA BLOCK 562
GULF OF MEXICO
O.C.S.-G. 8207 NO. A-C
JUNE, 1986
Mobil Oil Corp.
APPENDIX C
Appendix C has been deleted from this copy because it's CONFIDENTIAL.
DATE: June 23, 1986

TO: M.E. Sweeney

CC:

SHALLOW GAS STATEMENT
OCS-G-8207 WELL A
4500' FSL & 500' FEL
EAST BREAKS BLOCK 562
OFFSHORE, TEXAS

Pursuant to the identification of any "shallow gas" hazards which may be encountered by well A, the following data have been reviewed:

1) Potential Geologic Hazards Survey
Intesea Research, 1986

2) 2-D Seismic Line
TS33

The water depth under well A is about 1.3 sec two-way time, or about 3200'. Well A should not encounter any shallow gas hazards down to a depth of 2000' (about 2.0 sec., 5200' subsea). However, well A will pass within 500'-700' of a bright amplitude to the South that could represent a gas hazard at 2.05-2.15 sec (about 5500' subsea, or 2300' below the ocean bottom). This event is deep and should not be a serious drilling problem.

Conclusion

Well A should will not encounter shallow gas hazards down to 2000' below the ocean floor (5200' subsea).

B. Wildgoose
Geophysical Manager

NRG/fhn

A:W617517H.NRG
Pursuant to the identification of any "shallow gas" hazards which may be encountered by well B, the following data have been reviewed:

1) Potential Geologic Hazards Survey
 Intersea Research, 1986

2) 2-D Seismic Line
 TS-222 AND TS-33

The water depth under well B is about 1.35 sec two-way time, or about 3300'. Well B will encounter several small (less than 15 acre) unconnected bright events that could represent a gas hazard at 1.55-1.65 sec (about 3800'-4000' subsea or 500'-700' below the ocean bottom). These events are most likely regional and do not correspond to sand deposits.

In addition, well B will pass near two other bright events. These occur about 500' to the North covering about 100 acres at 1.80-1.85 sec (about 4600' subsea). The other event is about 200' to the Southwest covering about 250 acres at 2.15-2.30 sec (about 5800' subsea). This last event is quite deep and should not be a serious drilling problem.

Conclusion

Well B will encounter one shallow zone of small unconnected bright reflectors that could represent a shallow gas hazard, but is most likely a regional reflector. As the closest well did not encounter sands in this interval, we do not realistically anticipate shallow gas at this event.

B. Wildgoose
Geophysical Manager

NRG/fhn

A:W617517I.NRG
Pursuant to the identification of any "shallow gas" hazards which may be encountered by well C, the following data have been reviewed:

1) Potential Geologic Hazards Survey
 Intersea Research, 1986

2) 2-D Seismic Line
 TS-222

The water depth under Well C is about 1.3 sec two-way time, or about 3200'. Well C will encounter a bright amplitude that could represent a gas hazard at 1.45-1.50 sec (about 3600'-3700' subsea, or about 400'-500' below the ocean bottom). This reflector covers at least 500 acres and may be a regional event not associated with gas.

Conclusion

Well C will encounter a bright event not realistically believed to represent a gas hazard, but precaution should be taken when drilling the event.

B. Wildgoose
Geophysical Manager

NRG/fhn

A:W617517j.NRG
Western Pacesetter I

RIG DESCRIPTION

Lower Hulls (2):
- Beam: 50'-0"
- Length of Hull: 260'-0"
- Depth of Hull: 20'-0"

Caissons (6):
- Diameter: 32'-0"

Upper Structure:
- Main Deck Length Overall (Max): 231'-5½"
- Main Deck Beam Overall: 190'-7"
- Spider Deck Length: 66'-6"
- Spider Deck Width: 34'-0"

- 60' Operating Draft
- 45' Survival Draft
- 19' Transit Draft
TYPICAL DIVERTER SYSTEM FOR SEMI-SUBMERSIBLE RIG
TYPICAL SUB-SEA BOP STACK FOR SEMI-SUBMERSIBLE RIG
<table>
<thead>
<tr>
<th>WEIGHT MATERIALS</th>
<th>TRADE NAMES</th>
<th>DEFOAMERS</th>
<th>TRADE NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barite</td>
<td>Baroid, Magcoat, Imco Bar, Mil-Bar</td>
<td>Surface Active Dispersable Liquid Deoamer</td>
<td>Foaban, Bera Deoam, Magconol, LD-8</td>
</tr>
<tr>
<td>Hematite</td>
<td>Nu-Dense, Densimax, Magco Ferox</td>
<td>Aluminum Stearate</td>
<td>Aluminum Stearate</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>Imco Water, daracarb, Lo Water, W 0 35</td>
<td>Caustic Soda</td>
<td></td>
</tr>
<tr>
<td>VISCOSIFIERS</td>
<td></td>
<td>Calcium Carbonate</td>
<td>Potassium Hydroxide</td>
</tr>
<tr>
<td>Baroflourite</td>
<td></td>
<td>Calcium Carbonate</td>
<td>Soda Ash</td>
</tr>
<tr>
<td>Attapulgite</td>
<td></td>
<td>Calcium Bicarbonate</td>
<td>Bicarb</td>
</tr>
<tr>
<td>Hydroxethylcellulose</td>
<td></td>
<td>Calcium Sulfate</td>
<td>GYP</td>
</tr>
<tr>
<td>THINNERS</td>
<td></td>
<td>Calcium Hydroxide</td>
<td>Lime</td>
</tr>
<tr>
<td>Chrome Lignosulfonate</td>
<td></td>
<td>Calcium Chloride</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>Processed Lignite</td>
<td>Tannatin, Ligco, Imco lig, Carbonox</td>
<td>Sodium Chloride</td>
<td>Salt</td>
</tr>
<tr>
<td>Causticized Lignite</td>
<td>Imco Thin, Caustilg, Ligcon, CC-16</td>
<td>Potassium Chloride</td>
<td>ACL</td>
</tr>
<tr>
<td>Modified Tannin</td>
<td>Desco</td>
<td>Oil Mud Emulsifier</td>
<td>Kenol Conc, DNA, Carbo Tac (L)</td>
</tr>
<tr>
<td>Chrome Lignite</td>
<td>XP-20</td>
<td>Oil Wetting Agent</td>
<td>Carbofast</td>
</tr>
<tr>
<td>Polyacrylat</td>
<td>Therma-thin</td>
<td>Oil Mud Viscosifier</td>
<td>SE-11, DFL</td>
</tr>
<tr>
<td>Sodium Tetraphosphate</td>
<td>Magcophos, Oifos, Barafos, Imco Phos</td>
<td>Asphaltal Resin</td>
<td>Gelitong, Retro-Tone, VC-69, Carbo-Gel</td>
</tr>
<tr>
<td>Sodium Acid Pyrophosphate</td>
<td>S.A.P.P</td>
<td>Asphalt</td>
<td>Ken Lei</td>
</tr>
<tr>
<td>FLUID LOSS REDUCERS</td>
<td></td>
<td>Lost Circulation Materials</td>
<td>Carbo-trol, DV-22, Duratone</td>
</tr>
<tr>
<td>Bactericide Produced Polymer</td>
<td>Xc Polymer, Duovis</td>
<td>Pyc alleviate</td>
<td>Diesphalt, Liquid Protecto-Magic</td>
</tr>
<tr>
<td>Sodium Carbonymethylcellulose</td>
<td>Imco CMC, Cellex, Magco CMC, Mil CMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyionanionic Cellulosic Polymer</td>
<td>Drispac, Polypac, Staflo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Synergistic Polymer Blends"</td>
<td>In Temp, Risinex, Poly Rx, Durenex, Chemtrol-s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysaccharide</td>
<td>Mylogel, Impermax, Starch, Dextrina, Magico-polyal, Synerex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol-1acrylate</td>
<td>WL-100, Cydan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycrylamide</td>
<td>Cycloc, MF-1, ASP-700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyacrylamide-polyacrylamide</td>
<td>Newdrill, Kia-Kotu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO-Polymers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBRICANTS, SURFACTANTS, DETERGENTS</td>
<td>Lubricants for wells in environmentally sensitive areas</td>
<td>LOST CIRCULATION MATERIALS</td>
<td>Pyc replicate</td>
</tr>
<tr>
<td></td>
<td>DOS-3, Mentor 28, LVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergent</td>
<td>Imco MD, Con Pet, O-D Milchem-11</td>
<td>Nut Shells</td>
<td></td>
</tr>
<tr>
<td>Blend of Anionic Surfactants</td>
<td>Salinex</td>
<td>Cellophane Flakes</td>
<td>Phenolic Flakes</td>
</tr>
<tr>
<td>Extreme Pressure Lubricants</td>
<td>Imco EP Lube, EP Mud Lube, Bit Lube, Libri-film</td>
<td>STUCK PIPE ADDITIVES</td>
<td>Spotty, Pipelax, Free Pipe</td>
</tr>
<tr>
<td>Blends of Fatty Acids, Sulfonates, and Asphalitic Material</td>
<td>SFT</td>
<td>Oil Soluble Surfactant</td>
<td>Skot Free, Petrocote</td>
</tr>
<tr>
<td>Water dispersable asphalts</td>
<td>Holecoat II, Stabilhole, IPI</td>
<td>WORKOVER AND COMPLETION FLUIDS</td>
<td></td>
</tr>
<tr>
<td>Processed Hydrocarbons</td>
<td>Sollex</td>
<td>Sodium Bromide</td>
<td>Heavy weight clean brines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium Bromide</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc Bromide</td>
<td></td>
</tr>
</tbody>
</table>

LUBRICANTS, SURFACTANTS, DETERGENTS
- Lubricants for wells in environmentally sensitive areas
- Detergent
- Blend of Anionic Surfactants
- Extreme Pressure Lubricants
- Blends of Fatty Acids, Sulfonates, and Asphalitic Material
- Water dispersable asphalts
- Processed Hydrocarbons

DEFOAMERS
- Surface Active Dispersable Liquid Deoamer
- Calcium Sulfate
- Calcium Hydroxide
- Calcium Chloride
- Sodium Chloride
- Potassium Chloride

FLUID LOSS REDUCERS
- Bactericide Produced Polymer
- Sodium Carbonymethylcellulose
- Polyionanionic Cellulosic Polymer
- Synergistic Polymer Blends
- Polysaccharide
- Pol-1acrylate
- Polycrylamide
- Polyacrylamide-polyacrylamide CO-Polymers

WEIGHT MATERIALS
- Barite
- Hematite
- Calcium carbonate

VISCOSIFIERS
- Baroflourite
- Attapulgite
- Hydroxethylcellulose

THINNERS
- Chrome Lignosulfonate
- Processed Lignite
- Causticized Lignite
- Modified Tannin
- Chrome Lignite
- Polyacrylat
- Sodium Tetraphosphate
- Sodium Acid Pyrophosphate

FLUID LOSS REDUCERS
- Bactericide Produced Polymer
- Sodium Carbonymethylcellulose
- Polyionanionic Cellulosic Polymer
- "Synergistic Polymer Blends"
- Polysaccharide
- Pol-1acrylate
- Polycrylamide
- Polyacrylamide-polyacrylamide CO-Polymers

LUBRICANTS, SURFACTANTS, DETERGENTS
- Lubricants for wells in environmentally sensitive areas
- Detergent
- Blend of Anionic Surfactants
- Extreme Pressure Lubricants
- Blends of Fatty Acids, Sulfonates, and Asphalitic Material
- Water dispersable asphalts
- Processed Hydrocarbons

DEFOAMERS
- Surface Active Dispersable Liquid Deoamer
- Calcium Sulfate
- Calcium Hydroxide
- Calcium Chloride
- Sodium Chloride
- Potassium Chloride

LUBRICANTS, SURFACTANTS, DETERGENTS
- Lubricants for wells in environmentally sensitive areas
- Detergent
- Blend of Anionic Surfactants
- Extreme Pressure Lubricants
- Blends of Fatty Acids, Sulfonates, and Asphalitic Material
- Water dispersable asphalts
- Processed Hydrocarbons

DEFOAMERS
- Surface Active Dispersable Liquid Deoamer
- Calcium Sulfate
- Calcium Hydroxide
- Calcium Chloride
- Sodium Chloride
- Potassium Chloride
EAST BREAKS BLOCK 562
OFFSHORE EMISSIONS INVENTORY
TONS/yr

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SOx</th>
<th>HC</th>
<th>Part</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRILLING RIG (1)</td>
<td>747.52</td>
<td>50.41</td>
<td>24.92</td>
<td>104.31</td>
<td></td>
</tr>
<tr>
<td>BOATS (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crew Boats</td>
<td>35.20</td>
<td>1.88</td>
<td></td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>Work Boats</td>
<td>57.03</td>
<td>6.92</td>
<td></td>
<td>15.91</td>
<td></td>
</tr>
<tr>
<td>HELICOPTER (3)</td>
<td>1.07</td>
<td>0.34</td>
<td>0.97</td>
<td>0.23</td>
<td>10.67</td>
</tr>
<tr>
<td>TOTALS</td>
<td>840.88</td>
<td>50.75</td>
<td>34.70</td>
<td>0.23</td>
<td>138.63</td>
</tr>
<tr>
<td>EXEMPTION LEVEL (4)</td>
<td>3996.00</td>
<td>3996.00</td>
<td>3996.00</td>
<td>3996.00</td>
<td>82719.29</td>
</tr>
</tbody>
</table>

1. Based on a 6000 Hp drilling rig (52.56 MM Hp/hr/year) and calculated using EPA 450/3-77-026 Table 4.4, page 97.
2. Based on emissions factors in AP-42 (sect. 3.2 3.3), 2 boats 4 trips per week.
3. Based on emission factors in AP-42 Table 3-4, 18 trips/week.
4. Calculated using the following formulas with D = 120 miles:
 - CO = 3400 D 2/3
 - NOx,SOx,HC,Part = 33.3 (D)

8/5/86