June 21, 2019

UNITED STATES MEMORANDUM	GOVERNM	ENT	June	21,	20:
To: From:		c Information (MS 5030) Coordinator, FO, Plans Section (MS			
Subject: Control # Type Lease(s) Operator Description Rig Type		c Information copy of plan N-10067 Initial Exploration Plan OCS-G01194 Block - 58 South Marsh I Byron Energy Inc. Well A Jackup	sland	Area	a.

Attached is a copy of the subject plan.

It has been deemed submitted as of this date and is under review for approval.

Chiquita Hill Plan Coordinator

Site Type/NameBotm Lse/Area/Blk Surface LocationSurf Lse/Area/BlkWELL/AG01194/SM/585509 FSL, 6536 FWLG01194/SM/58

INITIAL EXPLORATION PLAN

South Marsh Island Block 58 OCS-G 01194

Prospect Name Cutthroat Affected State: Louisiana

Estimated Startup Date: August 1, 2019

SUBMITTED BY: Byron Energy Inc. 425 Settlers Trace Blvd, Suite 100 Lafayette, LA 70508

> Prent Kallenberger 337-769-0548 prentk@byronenergy.com

PREPARE: Kim Carrier 337-201-1409 kcarrier@byronenergy.com

TABL	E /	DE I	CON	TENI	TC
IADL			CON	IEN	13
					10 CT

SECTION 1 PLAN CONTENTS	1
1.1 PLAN INFORMATION	1
1.2 LOCATION	1
1.3 SAFETY AND POLLUTION PREVENTION FEATURES	1
1.4 STORAGE TANKS AND PRODUCTION VESSELS	1
1.5 POLLUTION PREVENTION MEASURES	2
1.6 ADDITIONAL MEASURES	2
SECTION 2 GENERAL INFORMATION	3
2.1 APPLICATIONS AND PERMITS	3
2.2 DRILLING FLUIDS	3
2.3 NEW OR UNUSUAL TECHNOLOGY	
2.4 BONDING STATEMENT	3
2.5 OIL SPILL FINANCIAL RESPONSIBILITY (OSFR)	3
2.6 DEEPWATER WELL CONTROL STATEMENT	3
2.7 BLOWOUT SCENARIO AND WORST CASE DISCHARGE CALCULATIONS	3
SECTION 3 GEOLOGICAL AND GEOPHYSICAL INFORMATION	6
3.1 GEOLOGICAL DESCRIPTION	6
3.2 STRUCTURE CONTOUR MAPS	6
3.3 INTERPRETED SEISMIC LINES	6
3.4 GEOLOGICAL STRUCTURE CROSS-SECTIONS	6
3.5 SHALLOW HAZARDS REPORT	6
3.6 SHALLOW HAZARDS ASSESSMENT	
3.7 HIGH-RESOLUTION SEISMIC LINES	6
3.8 STRATIGRAPHIC COLUMN	6
3.9 TIME VERSUS DEPTH TABLES	6
SECTION 4 HYDROGEN SULFIDE INFORMATION	7
4.1 CONCENTRATION	7
4.2 CLASSIFICATION	7
4.3 H2S CONTINGENCY PLAN	7

4.4 MODELING REPORT	7
SECTION 5 BIOLOGICAL, PHYSICAL AND SOCIOECONOMIC INFORMATION	8
5.1 DEEPWATER BENTHIC COMMUNITIES	8
5.2 TOPOGRAPHIC FEATURES (BANKS)	8
5.3 TOPOGRAPHIC FEATURES STATEMENT (SHUNTING)	8
5.4 LIVE BOTTOMS (PINNACLE TREND FEATURES)	
5.5 LIVE BOTTOMS (LOW RELIEF)	8
5.6 POTENTIALLY SENSITIVE BIOLOGICAL FEATURES MAP	8
5.7 REMOTELY OPERATED VEHICLE (ROV) SURVEYS	8
5.8 THREATENED AND ENDANGERED SPECIES, CRITICAL HABITAT, AND MARINE MAMMAL INFORMATION	8
5.9 ARCHAEOLOGICAL REPORT	9
5.10 AIR AND WATER QUALITY INFORMATION	10
5.11 SOCIOECONOMIC INFORMATION	10
SECTION 6 WASTES AND DISCHARGES INFORMATION	. 11
6.1 PROJECTED GENERATED WASTES	11
6.2 MODELING REPORT	11
SECTION 7 AIR EMISSIONS INFORMATION	12
7.1 EMISSIONS WORKSHEETS AND SCREENING QUESTIONS	12
7.2 SUMMARY INFORMATION	12
SECTION 8 OIL SPILL INFORMATION	13
8.1 OIL SPILL RESPONSE PLANNING	
8.2 SPILL RESPONSE SITES	13
8.3 OSRO INFORMATION	13
8.4 WORST CASE SCENARIO DETERMINATION	13
8.5 OIL SPILL RESPONSE DISCUSSION	14
8.6 MODELING REPORT	14
SECTION 9 ENVIRONMENTAL MONITORING INFORMATION	15
9.1 MONITORING SYSTEMS	15
9.2 INCIDENTAL TAKES	15
9.3 FLOWER GARDEN BANKS NATIONAL MARINE SANCTUARY	15
SECTION 10 LEASE STIPULATIONS INFORMATION	16
10.1 MILITARY WARNING AREA (MWA)	16

10.2 MARINE PROTECTED SPECIES	16
SECTION 11 ENVIRONMENTAL MITIGATION MEASURES INFORMATION	18
11.1 MEASURES TAKEN TO AVOID, MINIMIZE, AND MITIGATE IMPACTS	18
11.2 INCIDENTAL TAKES	18
SECTION 12 SUPPORT VESSELS AND AIRCRAFT INFORMATION	19
12.1 GENERAL	19
12.2 DIESEL OIL SUPPLY VESSELS	19
12.3 DRILLING FLUID TRANSPORTATION	19
12.4 SOLID AND LIQUID WASTE TRANSPORTATION	19
12.5 VICINITY MAP	19
SECTION 13 ONSHORE SUPPORT FACILITIES INFORMATION	20
SECTION 13 ONSHORE SUPPORT FACILITIES INFORMATION	
13.1 GENERAL	20
13.1 GENERAL 13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION	20 20 20
13.1 GENERAL 13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION 13.3 SUPPORT BASE CONSTRUCTION OR EXPANSION TIMETABLE	
 13.1 GENERAL 13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION 13.3 SUPPORT BASE CONSTRUCTION OR EXPANSION TIMETABLE 13.4 WASTE DISPOSAL 	20 20 20 20 20 20 20
 13.1 GENERAL 13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION 13.3 SUPPORT BASE CONSTRUCTION OR EXPANSION TIMETABLE 13.4 WASTE DISPOSAL SECTION 14 COASTAL ZONE MANAGEMENT ACT (CZMA) INFORMATION 	20 20 20 20 20 20 21 21 22
13.1 GENERAL 13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION 13.3 SUPPORT BASE CONSTRUCTION OR EXPANSION TIMETABLE 13.4 WASTE DISPOSAL SECTION 14 COASTAL ZONE MANAGEMENT ACT (CZMA) INFORMATION SECTION 15 ENVIRONMENTAL IMPACT ANALYSIS	20 20 20 20 20 21 21 22 23 23

SECTION ATTACHMENTS

Section 1	Plan Contents
1-A	OCS Plan Information Form
1-B	Well Location Plat
1-C	Bathymetry Map
Section 3	Geological, Geophysical Information
3-D	Shallow Hazard Assessment
Section 6	Wastes and Discharges Information
6-A	Wastes You Will Generate, Treat and Downhole Dispose or Discharge to the GOM
Section 7	Air Emissions Information
7-A	Emissions Worksheets
Section 8	Oil Spill Information
8-A	Oil Spill Response Discussion
Section 12	Support Vessels and Aircraft Information
12-A	Waste You Will Transport and/or Dispose Onshore
12-B	Vicinity Mao
Section 14	Coastal Zone Management Act Information
14-A	Coastal Zone Consistency Certification
Section 15	Environmental Impact Analysis (EIA)
15-A	Environmental Impact Analysis (EIA)

SECTION 1 PLAN CONTENTS

1.1 PLAN INFORMATION

Lease OCS-G 01194 was issued in the Central Gulf of Mexico Lease Sale No. 10 on March 16, 1962, with a lease period of 5 years.

Under this Initial Exploration Plan, Byron Energy Inc. (Byron) proposes to drill, complete, test and temporarily abandon one well (Location A). The well will be drilled with a jack-up MODU, and are located in approximately 132 feet of water.

The OCS Plan Information Form BOEM-137 is included as Attachment 1-A.

1.2 LOCATION

A Well Location Plat depicting the surface location and bottomhole location of the proposed well, measured depths/true vertical depths and water depth is included as **Attachment 1-B**.

No anchors are associated with the activities proposed in this plan. A Bathymetry Map depicting the surface location and water depth of the proposed wells is included as **Attachment 1-C.**

1.3 SAFETY AND POLLUTION PREVENTION FEATURES

A description of the drilling unit which complies with all relevant regulations is included on the OCS Plan Information Form. Rig specifications will be made part of each Application for Permit to Drill.

The rig will be equipped with safety and fire-fighting equipment required to comply with United States Coast Guard (USCG) regulations. Appropriate lifesaving equipment such as life rafts, life jackets, ring buoys, etc. as prescribed by the USCG, will be maintained on the rig at all times.

Safety features on the drilling unit will include well control, pollution prevention, and blowout prevention equipment as described in BSEE regulations 30 CFR 250 C, D, E, 0, Q and S; and as further clarified by BSEE Notices to Lessees, and current policy making invoked by the BSEE, Environmental Protection Agency (EPA) and the USCG.

Pollution prevention measures include installation of curbs, gutters, drip pans, and drains on drilling deck areas to collect all contaminants and debris. Compliance will be maintained with the EPA NPDES Permit. The rig will be monitored daily and any waste or fuel resulting in pollution of the Gulf waters will be reported to the representative in charge for immediate isolation and correction of the problem. Any spill will be reported to the appropriate governmental agencies.

1.4 STORAGE TANKS AND PRODUCTION VESSELS

The table below provides storage tanks with capacity of 25 barrels or more that will store fuels, oil and lubricants.

Type of Storage Tank	Type of Facility	Tank Capacity (bbl)	Number of Tanks	Total Capacity (bbl)	Fluid Gravity (API)
Fuel oil (marine diesel)	Rig	2120	1	2120	32.4°

1.5 POLLUTION PREVENTION MEASURES

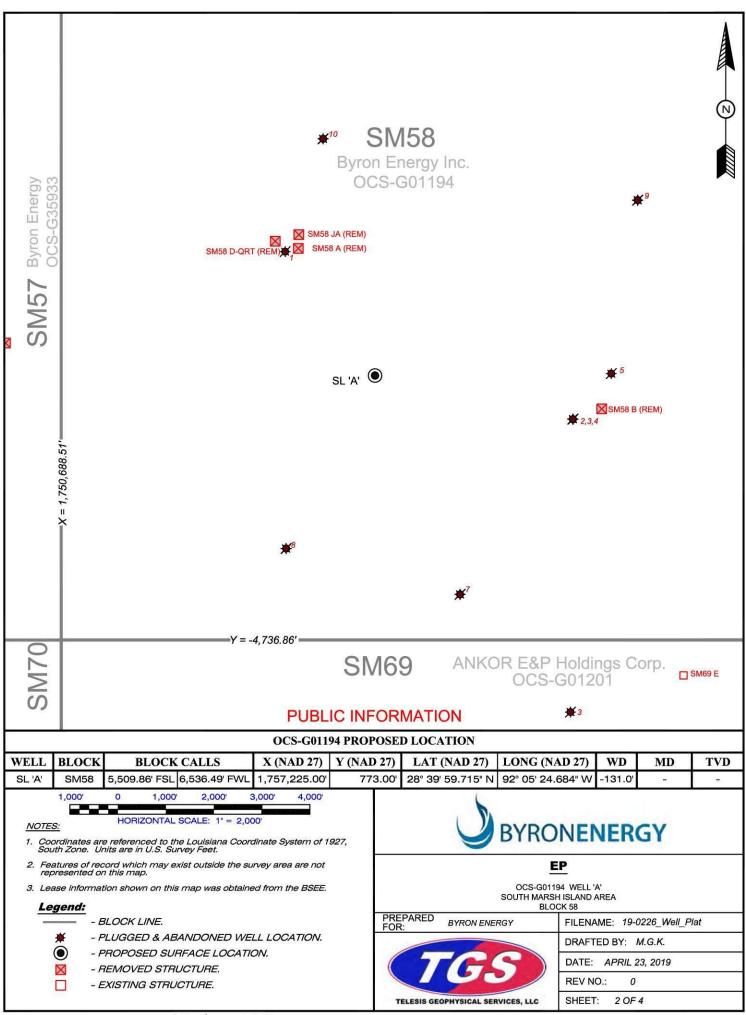
These operations do not propose activities for which the State of Florida is an affected state.

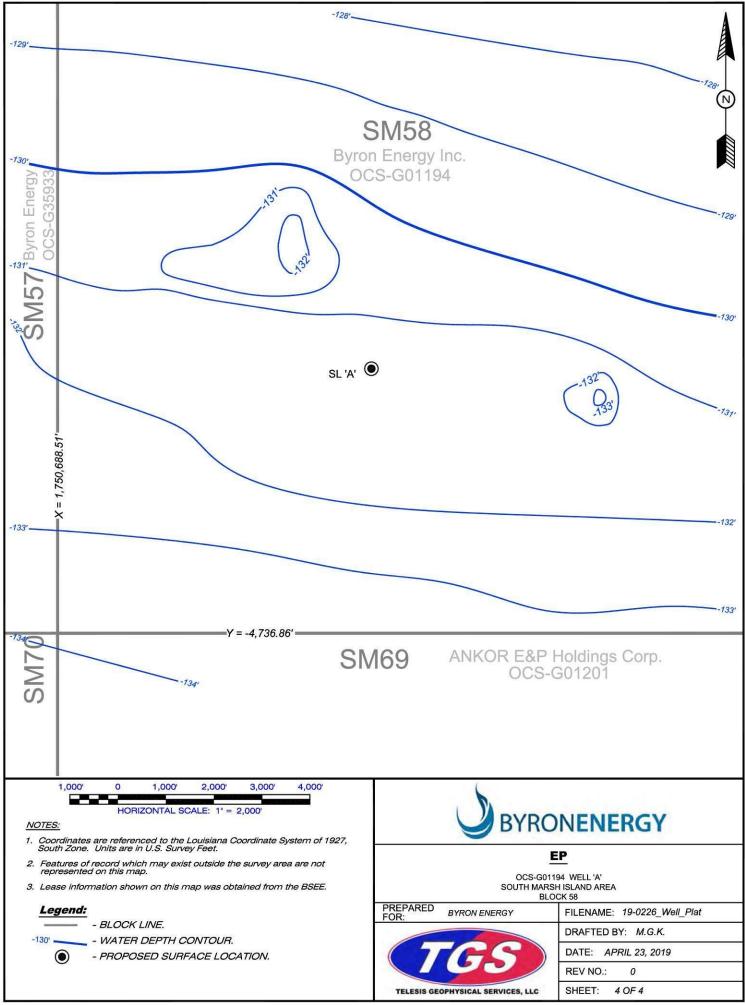
1.6 ADDITIONAL MEASURES

Byron does not propose any additional safety, pollution prevention, or early spill detection measures beyond those required by 30 CFR 250.

1.7 COST RECOVERY FEE

Documentation of the \$3673 cost recovery fee payment is included as Attachment 1-D.


U.S. Department of the Interior Bureau of Ocean Energy Management


OCS PLAN INFORMATION FORM

	General Information												
	of OCS Plan:	X	oration Plan	(EP) Dev			rdination Docu	ment (D	OCD)				
Com	oany Name: Byron Er	nergy Inc.				BOEM Operator Number: 02961							
Addr	ess:				Contact Pe	^{erson:} Prent	H. Kallenberg	jer					
	425 Settlers T	race Blvd.	, Suite 100			^{mber:} 337-7							
	Lafayette, La 70508				E-Mail Ad	^{ldress:} prent	k@byronener	gy.com	ţ		-		
If a se	ervice fee is required u	ınder 30 Cl	FR 550.125(a), provide	the A	mount paid		Reco	eipt No	0.			
	Project and Worst Case Discharge (WCD) Information												
	e(s): OCS-G-01194		Area: SM	Bloc			Applicable): Cu						
0.017.01	ctive(s) X Oil	Gas	Sulphur	Salt			^{(s):} Intracoasta				others	5	
Platfo	orm/Well Name: SM5	8 Well A	Total Volu		D:51,971-BC			API G	ravity:	35.9			
Dista	nce to Closest Land (I	Miles): 57.6	3	Volu	ume from unc	controlled blov	wout:						
Have	you previously provi	ded informa	ation to verif	y the calcu	lations and as	ssumptions for	r your WCD?			Yes	x	No	
If so,	provide the Control N	lumber of t	he EP or DC	CD with w	hich this info	ormation was	provided			2		-	
Do yo	ou propose to use new	or unusual	technology	to conduct	your activitie	es?				Yes	x	No	
Do yo	ou propose to use a ve	ssel with a	nchors to ins	tall or mod	ify a structure	e?				Yes	x	No	
Do yo	ou propose any facility	y that will s	erve as a ho	st facility fo	or deepwater :	subsea develo	opment?			Yes	x	No	
	D	escriptio	n of Prop	osed Acti	vities and	Tentative S	Schedule (M	[ark al	l tha	t apply	7)		
	Prop	osed Activi	ity		Start	Start Date End Date			No. of Days		Days		
Explo	oration drilling				8/1/19 8/26/19			25					
Deve	lopment drilling												
Well	completion				8/*	1/20	8/22/	20				21	
Well	test flaring (for more	than 48 hou	urs)										
Instal	lation or modification	of structur	e										
Instal	lation of production fa	acilities								5			
Instal	lation of subsea wellh	eads and/o	r manifolds										
Instal	lation of lease term pi	pelines											
Com	nence production												
Other	(Specify and attach d	lescription)											
	Descr	iption of	Drilling l	Rig			Des	criptio	on of	Struct	ure		
x	Jackup		Drillsh	_		Cais	son			Tension			in a state of the
	Gorilla Jackup		Platfor	m rig		Fixe	d platform		1	Complia	nt tow	ver	
	Semisubmersible		Subme	Submersible		Spar			1	Guyed to	ower		
DP Semisubmersible Other (Attach Dese			cription)		ting production	1751R S	2	Other (Attach Description)					
Drilli	ng Rig Name (If Kno	wn):	·			syste		X		Mud	Line	e Si	uspension
				and the second second second second		ease Term	Pipelines						
Fro	om (Facility/Area/Blo	ock)	To (Faci	lity/Area/H	Block)	Di	ameter (Inches	5)			Len	igth (H	leet)

OCS PI	LAN INFO	RMATION	FORM (C	CONTINUED)
clude one cop	y of this pa	age for each	n proposed	well/structure

Include one copy of this page for each proposed well/structure											
6	Proposed Well/Structure Location										
Well or Structu structure, refer			maming well or		Previously reviewed under an approved EP or DOCD?				Yes	Х	No
	~	0810	es No I	ALCOIRESE	S/8819-130	1: 4	a				
or structure?	or structure? X C					r structure, list					
Do you plan to use a subsea BOP or a surface BOP on a floa			oating fac	cility to conduct	your proposed	activities?	н 	Yes	5	No	
WCD info		, volume of ı (Bbls/day): 5		For struct	ctures, volume o s (Bbls):	f all storage and	1	API G fluid	ravity o	f	
	Surface 1	Location		Botto	om-Hole Locatio	on (For Wells)			oletion separa		multiple completions,
Lease No.	OCS G-1194			OCS				OCS OCS			,
Area Name	S	South Ma	rsh Island								
Block No.											
Blockline	N/S Depa	arture:	F <u>s</u> L	N/S I	Departure:		FL		Departu		FL
Departures (in feet)	5509	.86)epartur)epartur		FL FL
	E/W Dep	arture:	F <u>w</u> L	E/W	Departure:		FL	E/W	Departi	ire:	FL
	6536	.49							Departu Departu		FL FL
Lambert X-	X:			X:				X:			
Y coordinates	1,75	7,225						X: X:			
	Y:			Y:				Y:			
	773							Y: Y:			
Latitude/	Latitude			Latitu	ıde			Latitu			
Longitude	28 3	9' 59.7	'15" N					Latitu Latitu			
	Longitud	e		Longi	Longitude			Longitude			
	92 5'	24.68	4" W					Longitude Longitude			
Water Depth (I	Constant of Marcall			MD (MD (Feet): TVD (Feet):			MD (Feet): TVD (Feet):			TVD (Feet):
132	<u>//0 1:</u>	11				-		MD (TVD (Feet):
Anchor Radius	(if applica	ible) in feet:			N/A			MD (I	reet):		TVD (Feet):
			g Rig or Constru	iction B	Barge (If ancho	or radius suppl	ied above	e, not ne	ecessar	y)	
Anchor Name or No.	Area	Block	X Coordinate		Y Coordinate		Leng	gth of A	nchor	Chai	n on Seafloor
			X =		Y =						
			X =		Y =						
			X =		Y =						
			X =		Y =						
			X =		Y =						
			X =		Y =						
			X =		Y =						
			X =		Y =						

SECTION 2 GENERAL INFORMATION

2.1 APPLICATIONS AND PERMITS

The table below provides all additional applications to be filed covering operations proposed in this EP.

Application / Permit	Issuing Agency	Status
Application for Permit to Drill	BSEE	To be submitted
Application for Permit to Modify	BSEE	To be submitted
Emergency Evacuation Plan	USCG	To be submitted

2.2 DRILLING FLUIDS

The table below provides the types and estimated volumes of the drilling fluids Byron plans to use to drill the proposed wells.

Type of Drilling Fluid	Estimated Volume of Drilling Fluid to be Used per Well (bbl)
Water-based (seawater, freshwater, barite)	3000
Oil-based (diesel, mineral oil)	N/A
Synthetic-based (internal olefin, ester)	N/A

2.3 NEW OR UNUSUAL TECHNOLOGY

No new or unusual technology is proposed to carry out activities in this Initial Exploration Plan as defined by 30 CFR 550.200.

2.4 BONDING STATEMENT

The bond requirements for the activities and facilities proposed in this EP are satisfied by a lease bond, furnished and maintained according to 30 CFR 556, Subpart I; NTL No. 2000-G16, "Guidelines for General Lease Surety Bonds"; and additional security under 30 CFR 556.53(d) and National NTL No. 2008-N07, "Supplemental Bond Procedures" as required by BOEM.

2.5 OIL SPILL FINANCIAL RESPONSIBILITY (OSFR)

Byron Energy Inc. (Company No. 02961) will demonstrate oil spill financial responsibility for the facilities proposed in this EP according to 30 CFR 553; and NTL No. 2008-N05, "Guidelines for Oil Spill Financial Responsibility for Covered Facilities".

2.6 DEEPWATER WELL CONTROL STATEMENT

Byron Energy Inc. (Company No. 02961) has the financial capability to drill a relief well and conduct other emergency well control operations.

2.7 BLOWOUT SCENARIO AND WORST CASE DISCHARGE CALCULATIONS

The Worst Case Discharge is defined as an uncontrolled blowout through the drill string during drilling operations.

Estimated initial flow rate: The calculated Worst Case Discharge estimate for South Marsh Island Block 58, Well Location A is 76,691 BOPD.

Maximum duration/total volume that could occur if the South Marsh Island Block 58, Well Location A sustained a blowout:

Scenario	Maximum Discharge	Discharge Duration	Total Volume
	Rate (bbl/day)	(days)	Condensate (bbl)
Relief well	51,971	54	2,806,434

Potential of wellbore to bridge over during a blowout: Given the depth and nature of any hydrocarbon sands, it is anticipated the well would bridge over within the first 12 hours.

Likelihood for surface intervention to stop blowout: Byron will fulfill and implement all applicable requirements, and submit documentation that provides evidence that the BOP system is compatible and properly designed for the specific operations, and is therefore likely to stop the blowout.

In the event Conventional Surface Intervention is required due to a loss of well control from the surface, third party well control equipment would be mobilized to the rig. In this case, it would be assumed that the BOPs are compromised, no combustion has occurred, and the rig is capable of supporting well control efforts with the assistance of a support vessel. As an example, the intervention would consist of top killing the well with kill weight mud or possibly replacing the BOPs with another set to contain any flow from failed equipment.

Relief Well

Rig type capable of drilling relief well at water depth and to TD: The proposed well will be drilled from an open water location in 132' of water.

The rig chosen to drill a relief well must be:

- 1. Rated and equipped to work in 132' water depth
- 2. Have a BOP package acceptable and certified under BSEE regulations

The following rigs are capable of drilling a relief well at this water depth. There would be no rig package constraints.

Rig	Status
E264	Working (Active)
WFD 350	Working (Active)
ENSCO 68	Working (Active)

SECTION 3 GEOLOGICAL AND GEOPHYSICAL INFORMATION

3.1 GEOLOGICAL DESCRIPTION

Proprietary Information

3.2 STRUCTURE CONTOUR MAPS

Proprietary Information

3.3 INTERPRETED SEISMIC LINES

Proprietary Information

3.4 GEOLOGICAL STRUCTURE CROSS-SECTIONS

Proprietary Information

3.5 SHALLOW HAZARDS REPORT

A shallow hazards survey was conducted over South Marsh Island Block 58 in March 2095. In accordance with NTL No. 2008-G05, "Shallow Hazards Program," a shallow hazards survey evaluating seafloor and subsurface geological and manmade features and conditions that may adversely affect drilling operations, was conducted by Telesis Geophysical Services, LLC. The shallow hazards report is provided with this plan.

3.6 SHALLOW HAZARDS ASSESSMENT

In accordance with NTL No. 2008-G05, "Shallow Hazards Program," a shallow hazards assessment has been prepared for the proposed surface location evaluating seafloor and subsurface geological and manmade features and conditions that may adversely affect drilling operations. The shallow hazards assessment and archaeological assessment are included as **Attachment 3-D**.

3.7 HIGH-RESOLUTION SEISMIC LINES Proprietary Information

3.8 STRATIGRAPHIC COLUMN Proprietary Information

3.9 TIME VERSUS DEPTH TABLES Proprietary Information

April 25, 2019

Bureau of Ocean Energy Management Gulf of Mexico OCS Region (MS 5230) 1201 Elmwood Park Blvd. New Orleans, LA 70123-2394

Re: Byron Energy Inc.

Block 58, South Marsh Island Area Proposed OCS-G 01194 'A' Location Shallow Hazard Analysis Archaeological Assessment Area of Potential Effect (APE)

Byron Energy Inc. proposes to drill the OCS-G 01194 Well 'A' from the following surface location:

- 5,509.86' FSL and 6,536.49' FWL of Block 58, South Marsh Island Area
- X = 1,757,225.00' and Y = 773.00' (NAD 27)
- Latitude: 28°39' 59.715" N and Longitude: 92°05' 24.684" W (NAD 27)

Telesis Geophysical Services covered the proposed drilling location in an Archaeological and Hazard geophysical survey of the entire lease block from March 22nd – 25th of 2019. The survey provided high-resolution geophysical data complying with all aspects of the methodology for the *Shallow Hazards Program NTL No. 2008-G07* (extension through December 31, 2014 under *NTL No. 2014-G05*), *Archaeological Resource Surveys NTL No. 2005-G07*, and *NTL No. 2011-JOINT-G01*, listing SM58 as requiring an archaeological survey.

To ensure adequate survey data for BOEM analysts to review in the process of National Environmental Policy Act (NEPA) compliance, the acquired data set provides complete coverage of the newly defined **Area of Potential Effect** (<u>APE</u>) as required by BOEM & BSEE under **NTL No. 2008-G07, Section VI** and **NTL No. 2005-G07,** Avoidance of Archaeological Resources.

The basic <u>APE</u> on the seafloor at the proposed drill site will include either a typical jack-up rig mat, approximately 250' x 200' on bottom, or a typical jack-up rig with 3 independent legs supported by spud tanks approximately 45' in diameter spaced on roughly triangular 130'/145'/145' leg spacing.

As required for this shallow hazards assessment at the newly proposed surface location under NTL No. 2008-G04 Information Requirements for Exploration Plans and Developmental Operations Coordination Documents (extended by NTL No. 2014-G05), Geological and Geophysical Information (30 CFR 250.214 and 250.244), paragraphs (f) and (g), copies of the high-resolution subbottom profiler and medium penetration seismic profiler data are enclosed from the survey line closest to the proposed well location.

- *Water depth* is -131ft along the flat seafloor at the proposed site. Dormant pockmarks from past gas/fluid percolation are scattered throughout the lease block, but there are no pockmarks within 150' of the proposed drill site. These shallow pockmarks are not a hazard to drilling or rig placement.
- **Seafloor soils** are mud and sandy mud based on BOEM maps and sonar reflectivity. Soil vane shear strengths reportedly are 100lb/ft² (very soft) at the mudline in SM 58,
- Identified man-made features closest to the <u>APE</u> include:
 - Crimson Gulf 12" oil pipeline (Seg. 3034) is 1,125ft WSW of the proposed drill site.
 - o Removed 'A' Platform site (OCS-G 01194) is 3,090ft NW of the proposed drill site.
- **Magnetic anomaly** #80 is the nearest anomaly at a distance of 1,585ft NNW of the planned drill site. The unidentified ferromagnetic source is buried as evidenced by the lack of a sonar seafloor contact at that anomaly. The unidentified ferromagnetic material is not a hazard to rig moves and is far outside the proposed <u>APE</u> for drilling.
- Side scan sonar data highlighted anchor drag scars, pockmarks, and dense soil at the removed Platform 'A' location. There were no protruding man-made objects, obstructions, or seafloor outcrops within the 6,000ft square, site specific grid centered on the proposed drilling location. The sonar and magnetometer data did not highlight any protruding obstructions or shipwrecks in the survey grid, which covered the entire SM58 lease OCS-G 01194. The <u>APE</u> is clear of historical cultural resources.
- **Subbottom profiler** data detailed a former river/estuary complex beneath the well site and across the entire lease block. The infilled river beds, floodplains, and estuarine deposits from periods of lowered sea levels are saturated by decomposing organic peats, algae, plant, and animal remains that in bubble-phase scatter the high-frequency 3.5 kHz subbottom profiler signals. Attenuation of the subbottom pulse typically occurs within 20ft to 40ft below the seafloor at the proposed well site and most areas of the lease block. Studies conducted for the USGS and BLM by Coastal Studies Institute at LSU empirically measured gas volume percentages in shallow soil cores, and when correlated with subbottom profiler signal attenuation, calculations determined that a gaseous organic matrix with only 3% carbon dioxide and methane by volume was sufficient to preclude penetration and return reflectivity of high-frequency signals.
- The OCS Map Series MMS 84-0028 published by the Minerals Management Service in 1984 highlighted a massive Late Wisconsin river channel system beneath the entire survey area. This glacial stage river incised upper Pleistocene strata throughout low sea level cycles from at least 40,000 years ago through 12,000 years ago in SM 58. A massive salt diapir has also been defined on the MMS maps, and the diapiric uplift underlying the southern portion of SM 58 is defined on the medium penetration seismic data (time-migrated processed 2-second records) from this survey. The continual uplift of the salt dome reportedly controlled the drainage gradient, causing the river course to flow across the exposed continental shelf on the northern flank of the underlying diapir throughout the low sea level cycles associated with the last major glacial stages.

- **Multiple nearby offset wells** have been drilled on OCS-G 01194 without significant problems at the former 'A', 'JA', and 'B' Platform sites in SM 58. The available records from those previous drilling programs will provide valuable information on jack-up rig leg penetration or jack-up mat penetration. The drive pipe or upper conductor will penetrate the decomposing peat and algae layers within the infilled river/estuary beneath the seafloor and at least 100ft below the seafloor. Low-pressure, yet high-volume biogenic gas and fluids in the channel fill material will be anticipated when setting the conductor.
- **Soil vane shear strengths** reportedly are 400lb/ft² (soft) at 10ft below the mudline (BML), granular soil at 20ft BML, 600lb/ft² (firm) at 40ft BML, granular at 60ft BML, 1,000lb/ft² (stiff) at 80ft BML, 1,500lb/ft² (stiff) at 100ft BML, and 1,500lb/ft² (stiff) plus granular soils at 150ft BML.
- *Migrated seismic sections* highlighted thick channel deposits from 10 to 200 feet below the mudline with moderate to high relative amplitude increases sealed within the former river channel/floodplain/estuary network that encompasses the entire survey grid. The thickest fluvial deposits (shot points 120-145 on following section) with very high relative amplitude returns exist 1.000ft NW of the proposed well site. Velocity pull-downs below these thick channel deposits do not represent actual stratigraphic faults or slumping. A smaller fluvial deltaic lens exists at 200 to 230 feet below the mudline near the proposed well path. Possible pressure differential will be anticipated when setting the upper drive pipe through this interval calculated at 200 to 230 feet BML using processed seismic velocities. Strongly reflecting beds between 180ms and 250ms BSL (380ft to 555ft below mudline with applied velocities) are late Pleistocene strata that do not exhibit any faulting. These Pleistocene strata along the proposed well path have been intersected by all previous wells without significant problems. Relatively high amplitude anomalies exist 500ft north and 550ft northwest of the proposed well at intervals between 300/320 milliseconds (900/980ft) and 1280/1300ms (4,695/4,780ft) BSL. These bright spots will not be intersected by the proposed wellbore; and, normal drilling precautions will be employed during the planning of the proposed wellbore and drilling activities.

Byron Energy Inc. identified the primary hazards to rig movements and drilling. No protruding obstructions or shipwrecks exist within the <u>APE</u> for the proposed drilling. The existing pipelines, removed platform sites, and P&A well sites can be marked with real-time DGPS graphics on the rig to comply with *NTL No. 2008-G05 Section VI Mitigation of Potential Shallow Hazards parts 'B' & 'C'.* A field map depicting the aforementioned infrastructure in the general vicinity of the <u>APE</u> will be provided to key personnel on the drilling rig and all support vessels.

Decon Unamage

S. Dean ElDarragi Marine Geophysicist

Robert of Hoyd

Robert J. Floyd Ph.D. Geoscientist Marine Archaeologist

SECTION 4 HYDROGEN SULFIDE INFORMATION

4.1 CONCENTRATION

Byron anticipates encountering zero ppm H₂S during the proposed operations.

4.2 CLASSIFICATION

In accordance with Title 30 CFR 250.490(c), Byron requests that the area of proposed operations be classified by the BOEM as H₂S absent.

The basis for this determination is the evaluation of Shell's SM 58 A15 ST1 (API 17-707-00236-01) and Shell A18 (API 17-707-00335-00), which were drilled to the stratigraphic equivalent of the Sand Series as proposed in this EP.

4.3 H2S CONTINGENCY PLAN

An H2S Contingency Plan is not required for the activities proposed in this plan.

4.4 MODELING REPORT

Modeling reports are not required for the activities proposed in this plan.

SECTION 5

BIOLOGICAL, PHYSICAL AND SOCIOECONOMIC INFORMATION

5.1 DEEPWATER BENTHIC COMMUNITIES

Activities proposed in this EP are in water depths less than 300 meters (984 feet); therefore, information as outlined in Attachment A of NTL No. 2009-G40, "Deepwater Benthic Communities," is not provided.

5.2 TOPOGRAPHIC FEATURES (BANKS)

Activities proposed in this EP do not fall within 305 meters (1000 feet) of a topographic "No Activity Zone;" therefore, no map is required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

5.3 TOPOGRAPHIC FEATURES STATEMENT (SHUNTING)

Activities proposed under this EP will be conducted outside all Topographic Feature Protective Zones; therefore shunting of drill cuttings and drilling fluids is not required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

5.4 LIVE BOTTOMS (PINNACLE TREND FEATURES)

South Marsh Island Block 58 is not located within 61 meters (200 feet) of any pinnacle trend feature; therefore, a separate bathymetric map is not required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

5.5 LIVE BOTTOMS (LOW RELIEF)

South Marsh Island Block 58 is not located within 30 meters (100 feet) of any live bottom (low relief) feature with vertical relief equal to or greater than 8 feet; therefore, live bottom (low relief) maps are not required per NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas."

5.6 POTENTIALLY SENSITIVE BIOLOGICAL FEATURES MAP

South Marsh Island Block 58 is not located within 30 meters (100 feet) of potentially sensitive biological features. In accordance with NTL No. 2009-G39, "Biologically Sensitive Underwater Features and Areas," biologically sensitive area maps are not required.

5.7 REMOTELY OPERATED VEHICLE (ROV) SURVEYS

Byron will not be conducting any ROV surveys either pre-spud or post-drill operations.

5.8 THREATENED AND ENDANGERED SPECIES, CRITICAL HABITAT, AND MARINE MAMMAL INFORMATION

The federally listed endangered and threatened species potentially occurring in the lease area and along the Gulf Coast are provided in the table below.

Species	Scientific Name	Status		ential sence	Critical Habitat Designated inthe Gulf of Mexico	
			Lease Area	Coastal	emerikaesin inter ekseptemiste kenkarti terentarsizkisesiskeen.	
Marine Mammals						
Manatee, West Indian	Trichechus manatus latirostris	E		Х	Florida (peninsular)	
Whale, Blue	Balaenootera masculus	E	Х		None	
Whale, Finback	Balaenoptera physalus	E	Х	1.000	None	
Whale, Humpback	Megaptera novaeangliae	E	Х	1.55	None	
Whale, North Atlantic Right	Eubalaena glacialis	E	Х		None	
Whale, Sei	Balaenopiera borealis	E	Х		None	
Whale, Sperm	Physeter catodon (=macrocephalus)	E	Х		None	
Terrestrial Mamr						
Mouse, Beach (Alabama, Choctawatchee, Perdido Key, St. Andrew)	Peromyscus polionotus	E	-	Х	Alabama, Florida (panhandle) beaches	
Birds		2				
Plover, Piping	Charadrius melodus	Т	5 1 1	X	Coastal Texas, Louisiana, Mississippi, Alabama and Florida (panhandle)	
Crane, Whooping	Grus Americana	E	() - ()	X	Coastal Texas	
Reptiles		90		142		
Sea Turtle, Green	Chelonia mydas	T,E	Х	Х	None	
Sea Turtle, Hawksbill	Eretmochelys imbricata	E	Х	Х	None	
Sea Turtle, Kemp's Ridley	Lepidochelys kempli	E	Х	Х	None	
Sea Turtle, Leatherback	Dermochelys coriacea	E	Х	X	None	
Sea Turtle, Loggerhead	Caretta caretta	Т	Х	X	Texas, Louisiana, Mississippi, Alabama, Florida	
Fish			5,655			
Sturgeon, Gulf	Acipenser oxyrinchus (=oxyrhynchus) desotoi	Т	Х	X	Coastal Louisiana, Mississippi, Alabama and Florida (panhandle)	
Corals	•					
Coral, Elkhorn	Acopora palmate	Т	-	Х	Florida Keys and Dry Tortugas	
Coral, Staghorn	Acopora cervicomis	Т	-	Х	Florida	

Abbreviations : E = Endangered; T = Threatened

• The Blue Fin, Humpback, North Atlantic Right, and Sei Whales are rare or extralimital in the Gulf of Mexico and are unlikely to be present in the lease area.

Green Sea turtle is threatened, except for the Florida breeding population, which is listed as endangered.

5.9 ARCHAEOLOGICAL REPORT

South Marsh Island Block 58 has been determined to have a high potential for containing archaeological properties. In accordance with NTL No. 2005-G07 "Archaeological Resource

Surveys and Reports," and NTL No. 2011-JOINT-G01, "Revisions to the List of OCS Lease Blocks Requiring Archaeological Resource Surveys and Reports," an archaeological resource survey report is provided with this plan.

5.10 AIR AND WATER QUALITY INFORMATION

Air and water quality information is not required to be included in this plan per NTL No. 2008-G04, "Information requirements for Exploration Plans and Development Operations Coordination Documents."

5.11 SOCIOECONOMIC INFORMATION

Socioeconomic information is not required to be included in this plan per NTL No. 2008-G04, "Information Requirements for Exploration Plans and Development Operations Coordination Documents."

SECTION 6 WASTES AND DISCHARGES INFORMATION

6.1 PROJECTED GENERATED WASTES

"Wastes You Will Generate, Treat and Downhole Dispose or Discharge to the Gulf of Mexico" is included as **Attachment 6-A**.

6.2 MODELING REPORT

Modeling reports are not required for the activities proposed in this plan.

TABLE 1. WASTE ESTIMATED TO BE GENERATED, TREATED AND/OR DOWNHOLE DISPOSED OR DISCHARGED TO THE GOM

Projected generated waste		Projected ocean d	Projected Downhole Disposal		
Type of Waste	Composition	Projected Amount	Discharge rate	Discharge Method	Answer yes o
Vill drilling occur ? If yes, you should list muds an	d cuttings				
Water-based drilling fluid	WBD Mud	3000 bbls/well	100 bbls/day/well	Discharge overboard in compliance with EPA NPDES	No
Cuttings wetted with water-based fluid	Sand / Shale cuttings	1500 bbls/well	50 bbls/day/well	Discharge overboard in compliance with EPA NPDES	No
Cuttings wetted with synthetic-based fluid	N/A	N/A	N/A	N/A	No
/ill humans be there? If yes, expect conventional v	waste				
Domestic waste	Gray water (laundry, galley, lavatory)	10 bbls/day/well	10 bbls/day/well	Discharge overboard in compliance with EPA NPDES	No
Sanitary waste	Sanitary waste from rig	100 bbls/well	5 bbls/day/well	Discharge overboard in compliance with EPA NPDES	No
there a deck? If yes, there will be Deck Drainage					
Deck Drainage	Rainfall	35 bbls/well	1 bbl/day/well	Discharge overboard in compliance with EPA NPDES	No
ill you conduct well treatment, completion, or wor	rkover?				
Well treatment fluids	neutralized acid waster, seawater	150 bbls/well	5 bbls/minute	Discharge overboard in compliance with EPA NPDES	No
Well completion fluids	CaCl2	50 bbls/well	50 bbls / one time	Discharge overboard in compliance with EPA NPDES	No
Workover fluids.					
scellaneous discharges. If yes, only fill in those a					NUA
Desalinization unit discharge	N/A	N/A	N/A	N/A	N/A
Blowout prevent fluid	N/A	N/A	N/A	N/A	N/A
Ballast water	N/A	N/A	N/A	N/A	N/A
Bilge water	N/A	N/A	N/A	N/A	N/A
Excess cement at seafloor	N/A	N/A	N/A	N/A	N/A
Fire water	N/A	N/A	N/A	N/A	N/A
Cooling water	Seawater	10000 bbls/well	10 bbls/hr/well	Discharge overboard in compliance with EPA NPDES	No
Il you produce hydrocarbons? If yes fill in for pro-	duced water.	The second second second			
Produced water	Produced water	N/A	N/A	N/A	N/A
ease enter individual or general to indicate which	type of NPDES permit you will	be covered by?	GMG 290553		

SECTION 7 AIR EMISSIONS INFORMATION

7.1 EVISSIONS WORKSHEET AND SCREENING QUESTIONS

Screen Questions for EP's	Yes	NO
Is any calculated Complex Total (CT) Emission amount (tons) associated with your proposed exploration activities more than 90% of the amounts calculated using the following formulas: CT = 3400D $\frac{2}{3}$ for CO and CT = 33.3D for the other air pollutants (where D = distance to shore in miles)?		Х
Do your emission calculations include any emission reduction measures or modified emissions factor?		Х
Are your proposed exploration activities located east of 87.5 W longitude?°		Х
Do you expect to encounter H2S at concentrations greater than 20 parts per million (ppm)?		Х
Do you propose to flare or vent natural gas for more than 48 continuous hours from any proposed well?		Х
Do you propose to burn produced hydrocarbon liquids?		Х

7.2 MODELING REPORT

There are no activities co-located with the proposed activities; therefor the Plan Emissions and the Complex Total Emissions are the same. Included as **Attachment 7-A are Air Emission Worksheets**

This information was calculated by:

Kelley Pisciola 281-698-8519 kelley.pisciola@jccteam.com

EXPLORATION PLAN (EP) AIR QUALITY SCREENING CHECKLIST

COMPANY	Byron Energy Inc.
AREA	South Marsh Island
BLOCK	58
LEASE	OCS-G 01194
PLATFORM	N/A
WELL	Well Location A
	Kelley Pisciola
COMPANY CONTACT	Kim Carrier
	281-698-8519
TELEPHONE NO.	337-769-0546
REMARKS	Drill and mudline suspend Well Location A

Attachment 7-A

EMISSIONS FACTORS

Fuel Usage Conversion Factors	Natural Gas Turbines		Natural Gas Engines		Diesel Recip. Engine		REF.	DATE
2011A	SCF/hp-hr	9.524	SCF/hp-hr	7.143	GAL/hp-hr	0.0483	AP42 3.2-1	4/76 & 8/84
			^					
Equipment/Emission Factors	units	PM	SOx	NOx	VOC	CO	REF.	DATE
NG Turbines	gms/hp-hr		0.00247	1.3	0.01	0.83	AP42 3.2-1& 3.1-1	10/96
NG 2-cycle lean	gms/hp-hr		0.00185	10.9	0.43	1.5	AP42 3.2-1	10/96
NG 4-cycle lean	gms/hp-hr		0.00185	11.8	0.72	1.6	AP42 3.2-1	10/96
NG 4-cycle rich	gms/hp-hr		0.00185	10	0.14	8.6	AP42 3.2-1	10/96
Diesel Recip. < 600 hp.	gms/hp-hr	1	0.1835	14	1.12	3.03	AP42 3.3-1	10/96
Diesel Recip. > 600 hp.	gms/hp-hr	0.32	0.1835	11	0.33	2.4	AP42 3.4-1	10/96
Diesel Boiler	lbs/bbl	0.084	0.3025	0.84	0.008	0.21	AP42 1.3-12,14	9/98
NG Heaters/Boilers/Burners	lbs/mmscf	7.6	0.593	100	5.5	84	P42 1.4-1, 14-2, & 14	7/98
NG Flares	lbs/mmscf		0.593	71.4	60.3	388.5	AP42 11.5-1	9/91
Liquid Flaring	lbs/bbl	0.42	6.83	2	0.01	0.21	AP42 1.3-1 & 1.3-3	9/98
Tank Vapors	lbs/bbl				0.03		E&P Forum	1/93
Fugitives	lbs/hr/comp.				0.0005		API Study	12/93
Glycol Dehydrator Vent	lbs/mmscf				6.6		La. DEQ	1991
Gas Venting	lbs/scf				0.0034			

Sulphur Content Source	Value	Units
Fuel Gas	3.33	ppm
Diesel Fuel	0.05	% weight
Produced Gas(Flares)	3.33	ppm
Produced Oil (Liquid Flaring)	1	% weight

EMISSIONS CALCULATIONS

COMPANY	AREA	BLOCK	LEASE	PLATFORM	WELL			CONTACT		PHONE	REMARKS					
Byron Energy Inc.	South Marsh Island	58	OCS-G 01194	N/A	Well Location A			Kelley Pisciola 281-698-8519 Kim Carrier 337-769-0546								
OPERATIONS	EQUIPMENT	RATING	MAX. FUEL	ACT. FUEL	RUN	TIME	MAXIMUM POUNDS PER HOUR			ESTIMATED TONS						
2	Diesel Engines	HP	GAL/HR	GAL/D												
	Nat. Gas Engines	HP	SCF/HR	SCF/D					<i></i>							
	Burners	MMBTU/HR	SCF/HR	SCF/D	HR/D	D/YR	PM	SOx	NOx	Voc	co	PM	SOx	NOx	VOC	co
DRILLING	PRIME MOVER>600hp diesel	16975	819.8925	19677.42	24	30	11.96	6.86	411.29	12.34	89.74	4.31	2.47	148.06	4.44	32.30
	PRIME MOVER>600hp diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	PRIME MOVER>600hp diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	PRIME MOVER>600hp diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	BURNER diesel	0			0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	AUXILIARY EQUIP<600hp diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS>600hp diesel(crew)	2065	99.7395	2393.75	6	4	1.46	0.83	50.03	1.50	10.92	0.02	0.01	0.60	0.02	0.13
	VESSELS>600hp diesel(supply)	2065	99.7395	2393.75	10	4	1.46	0.83	50.03	1.50	10.92	0.03	0.02	1.00	0.03	0.22
	VESSELS>600hp diesel(tugs)	8400	405.72	9737.28	8	2	5.92	3.40	203.52	6.11	44.41	0.05	0.03	1.63	0.05	0.36
FACILITY	DERRICK BARGE diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INSTALLATION	MATERIAL TUG diesel	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS>600hp diesel(crew)	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS>600hp diesel(supply)	0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MISC.	BPD	SCF/HR	COUNT										<i>n</i>		
	TANK-	0			0	0				0.00					0.00	
DRILLING	OIL BURN	0			0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WELL TEST	GAS FLARE		0		0	0		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
2019	YEAR TOTAL						20.80	11.93	714.88	21.45	155.97	4.40	2.52	151.29	4.54	33.01
EXEMPTION	DISTANCE FROM LAND IN MILES						11	I			I	1931.40	1931.40	1931.40	1931.40	50944.53
	58.0											1001110	1001110	1001110	1001110	
	00.0															1

SUMMARY

COMPANY	AREA	BLOCK	LEASE	PLATFORM	WELL
Byron Energy Ir	South Marsh Island	58	OCS-G 01194	N/A	Well Location A
		Emitted		Substance	
Year					
	PM	SOx	NOx	VOC	CO
2019	4.40	2.52	151.29	4.54	33.01
Allowable	1931.40q	1931.40	1931.40	1931.40	50944.53

SECTION 8 OIL SPILL INFORMATION

8.1 OIL SPILL RESPONSE PLANNING

All the proposed activities and facilities in this EP will be covered by the Oil Spill Response Plan (OSRP) filed by Byron Energy Inc. (Company No. 02961) dated July 2017 and last approved on June 6, 2018 (OSRP Control No. O-706).

8.2 SPILL RESPONSE SITES

Primary Response Equipment Location	Preplanned Staging Location
Houma, LA	Houma, LA
Leeville, LA	Leeville, LA
Cameron, LA	Cameron, LA

8.3 OSRO INFORMATION

Byron's primary equipment provider is Clean Gulf Associates (CGA). Clean Gulf Associates Services, LLC (CGAS) will provide closest available personnel, as well as a supervisor to operate the equipment.

8.4 WORST CASE SCENARIO DETERMINATION

Category	Regional OSRP WCD Drilling	EP WCD Drilling
Type of activity	Exploratory Drilling	Exploratory Drilling
Facility Location (area/block)	SM 71	SM 58
Facility designation	F-4	A
Distance to nearest shoreline (miles)	63.3	58
Storage tanks (bbl)	0	0
Uncontrolled blowout (bbl)	55,102	51,971
Total volume	55,102	51,971
Type of oil(s)	Crude	Crude
(crude, condensate, diesel		
API Gravity	42.0°	35.9°

The EP Drilling WCD calculations and Production WCD volume were approved June 30, 2017, under Plan Control No. N-99771.

Byron has determined that the worst-case scenario from the activities proposed in this EP does not supersede the worst-case scenario from our approved Regional OSRP.

Since Byron Energy Inc. has the capability to respond to the worst-case spill scenario included in our Regional OSRP filed in July 2017 and last approved on June 6, 2018, and since the worst-case scenario determined for our EP does not replace the worst-case scenario in our Regional OSRP, Byron Energy Inc. hereby certifies that Byron Energy Inc. has the capability to respond, to the maximum extent practicable, to a worst-case discharge, or a substantial threat of such a discharge, resulting from the activities proposed in this EP.

8.5 OIL SPILL RESPONSE DISCUSSION

The Oil Spill Response Discussion is included as Attachment 8-A.

8.6 MODELING REPORT

Modeling reports are not required for the activities proposed in this plan.

SPILL RESPONSE DISCUSSION

For the purpose of NEPA and Coastal Zone Management Act analysis, the largest spill volume originating from the proposed activity would be a well blowout during drilling operations, estimated to be 51,971 barrels of crude oil with an API gravity of 35.9°.

Land Segment and Resource Identification

Trajectories of a spill and the probability of it impacting a land segment have been projected utilizing information in the BOEM Oil Spill Risk Analysis Model (OSRAM) for the Central and Western Gulf of Mexico available on the BOEM website. The results are shown in **Figure 1**. The BOEM OSRAM identifies a 21% probability of impact to the shorelines of Cameron Parish, Louisiana within 30 days. Cameron Parish includes the east side of Sabine Lake, Sabine National Wildlife Refuge, Calcasieu Lake, Lacassine National Wildlife Refuge (inland) and Grand Lake. Cameron Parish also includes the area along the coastline from Sabine Pass to Big Constance Lake in Rockefeller Wildlife Refuge. This region is composed of open public beaches, marshlands and swamps. It serves as a habitat for numerous birds, finfish and other animals, including several rare, threatened and endangered species.

Response

Byron Energy Inc. will make every effort to respond to the Worst Case Discharge as effectively as practicable. A description of the response equipment under contract to contain and recover the Worst Case Discharge is shown in **Figure 2**.

Using the estimated chemical and physical characteristics of crude oil, an ADIOS weathering model was run on a similar product from the ADIOS oil database. The results indicate 28% or approximately 14,552 barrels of crude oil would be evaporated/dispersed within 24 hours, with approximately 37,419 barrels remaining.

Natural Weathering Data: SM 58, Well Location A	Barrels of Oil
WCD Volume	51,971
Less 28% natural evaporation/dispersion	14,552
Remaining volume	37,419

Figure 2 outlines equipment, personnel, materials and support vessels as well as temporary storage equipment available to respond to the worst case discharge. The volume accounts for the amount remaining after evaporation/dispersion at 24 hours. The list estimates individual times needed for procurement, load out, travel time to the site and deployment. Figure 2 also indicates how operations will be supported.

Byron Energy Inc.'s Oil Spill Response Plan includes alternative response technologies such as dispersants. Strategies will be decided by Unified Command based on a safety analysis, the size of the spill, weather and potential impacts. Although unlikely, if aerial dispersants are utilized, 8

Attachment 8-A

sorties (9,600 gallons) from two of the DC-3 aircrafts and 4 sorties (8,000 gallons) from the Basler aircraft would provide a daily dispersant capability of 7,540 barrels. Slick containment boom and sorbent boom would be immediately called out and on-scene as soon as possible. Offshore response strategies may include collection of crude oil with sorbent boom (inside hard boom), attempting to skim utilizing CGA spill response equipment, with a total derated skimming capacity of 706,980 barrels. Temporary storage associated with skimming equipment equals 32,796 barrels. If additional storage is needed, various storage barges with a total capacity 706,000+ bbls may be mobilized and centrally located to provide temporary storage and minimize off-loading time. Safety is first priority. Air monitoring will be accomplished and operations deemed safe prior to any containment/skimming attempts.

If the spill went unabated, shoreline impact in Cameron Parish, Louisiana would depend upon existing environmental conditions. Shoreline protection would include the use of CGA's near shore and shallow water skimmers with a totaled derated skimming capacity of 235,300 barrels. Temporary storage associated with skimming equipment equals 2,841 barrels. If additional storage is needed, various storage barges with a total capacity 235,000+ bbls may be mobilized and centrally located to provide temporary storage and minimize off-loading time. Onshore response may include the deployment of shoreline boom on beach areas, or protection and sorbent boom on vegetated areas. A Master Service Agreement with OMI Environmental will ensure access to 33,900 feet of 18" shoreline protection boom. Figure 2 outlines individual times needed for procurement, load out, travel time to the site and deployment. Strategies would be based upon surveillance and real time trajectories that depict areas of potential impact given actual sea and weather conditions. Applicable Area Contingency Plans (ACPs), Geographic Response Plans (GRPs), and Unified Command (UC) will be consulted to ensure that environmental and special economic resources are correctly identified and prioritized to ensure optimal protection. Shoreline protection strategies depict the protection response modes applicable for oil spill clean-up operations. As a secondary resource, the State of Louisiana Initial Oil Spill Response Plan will be consulted as appropriate to provide detailed shoreline protection strategies and describe necessary action to keep the oil spill from entering Louisiana's coastal wetlands. The UC should take into consideration all appropriate items detailed in Tactics discussion of this Appendix. The UC and their personnel have the option to modify the deployment and operation of equipment to allow for a more effective response to site-specific circumstances. Byron Energy Inc.'s contract Spill Management Team has access to the applicable ACP(s) and GRP(s).

Based on the anticipated worst case discharge scenario, Byron Energy Inc. can be onsite with contracted oil spill recovery equipment with adequate response capacity to contain and recover surface hydrocarbons, and prevent land impact, to the maximum extent practicable, within an estimated 72 hours (based on the equipment's Effective Daily Recovery Capacity (EDRC)).

Initial Response Considerations

Actual actions taken during an oil spill response will be based on many factors to include but not be limited to:

- Safety
- Weather
- Equipment and materials availability
- Ocean currents and tides
- Location of the spill
- Product spilled
- Amount spilled
- Environmental risk assessments
- Trajectory and product analysis
- Well status, i.e., shut in or continual release

Byron Energy Inc. will take action to provide a safe, aggressive response to contain and recover as much of the spilled oil as quickly as it is safe to do so. In an effort to protect the environment, response actions will be designed to provide an "in-depth" protection strategy meant to recover as much oil as possible as far from environmentally sensitive areas as possible. Safety will take precedence over all other considerations during these operations.

Coordination of response assets will be supervised by the designation of a SIMOPS group as necessary for close quarter vessel response activities. Most often, this group will be used during source control events that require a significant number of large vessels operating independently to complete a common objective, in close coordination and support of each other. This group must also monitor the subsurface activities of each vessel (ROV, dispersant application, well control support, etc.). The SIMOPS group leader reports to the Source Control Section Chief.

In addition, these activities will be monitored by the spill management team (SMT) and Unified Command via a structured Common Operating Picture (COP) established to track resource and slick movement in real time.

Upon notification of a spill, the following actions will be taken:

- Information will be confirmed
- An assessment will be made and initial objectives set
- OSROs and appropriate agencies will be notified
- ICS 201, Initial Report Form completed
- Initial Safety plan will be written and published
- Unified Command will be established
 - Overall safety plan developed to reflect the operational situation and coordinated objectives
 - Areas of responsibility established for Source Control and each surface operational site
 - On-site command and control established

Offshore Response Actions

Equipment Deployment

Surveillance

- Surveillance Aircraft: within two hours of QI notification, or at first light
- Provide trained observer to provide on site status reports
- Provide command and control platform at the site if needed
- Continual surveillance of oil movement by remote sensing systems, aerial photography and visual confirmation
- Continual monitoring of vessel assets using vessel monitoring systems

Dispersant application assets

- Put ASI on standby
- With the FOSC, conduct analysis to determine appropriateness of dispersant application (refer to Section 18)
- Gain FOSC approval for use of dispersants on the surface
- Deploy aircraft in accordance with a plan developed for the actual situation
- Coordinate movement of dispersants, aircraft, and support equipment and personnel
- Confirm dispersant availability for current and long range operations
- Start ordering dispersant stocks required for expected operations

Containment boom

- Call out early and expedite deployment to be on scene ASAP
- Ensure boom handling and mooring equipment is deployed with boom
- Provide continuing reports to vessels to expedite their arrival at sites that will provide for their most effective containment
- Use Vessels of Opportunity (VOO) to deploy and maintain boom

Oceangoing Boom Barge

- Containment at the source
- Increased/enhanced skimmer encounter rate
- Protection booming

In-situ Burn assets

- Determine appropriateness of in-situ burn operation in coordination with the FOSC and affected SOSC
- Determine availability of fire boom and selected ignition systems
- Start ordering fire boom stocks required for expected operations
- Contact boom manufacturer to provide training & tech support for operations, if required
- Determine assets to perform on water operation
- Build operations into safety plan
- Conduct operations in accordance with an approved plan
- Initial test burn to ensure effectiveness

Dedicated off-shore skimming systems

General

- Deployed to the highest concentration of oil
- Assets deployed at safe distance from aerial dispersant and in-situ burn operations

CGA HOSS Barge

- Use in areas with heaviest oil concentrations
- Consider for use in areas of known debris (seaweed, and other floating materials)

CGA 95' Fast Response Vessels (FRVs)

- Designed to be a first vessel on scene
- Capable of maintaining the initial Command and Control function for on water recovery operations
- 24 hour oil spill detection capability
- Highly mobile and efficient skimming capability
- Use as far off-shore as safely possible

CGA FRUs

- To the area of the thickest oil
- Use as far off-shore as allowed
- VOOs 140' 180' in length
- VOOs with minimum of 18' x 38' or 23' x 50' of optimum deck space
- VOOs in shallow water should have a draft of <10 feet when fully loaded

T&T Koseq Skimming Systems

- To the area of the thickest oil
- Use as far off-shore as allowed
- VOOs with a minimum of 2,000 bbls storage capacity
- VOOs at least 200' in length
- VOOs with deck space of 100' x 40' to provide space for arms, tanks, and crane
- VOOs for shallow water should be deck barges with a draft of <10 feet when fully loaded

Storage Vessels

- Establish availability of CGA contracted assets (See Appendix E)
- Early call out (to allow for tug boat acquisition and deployment speeds)
- Phase mobilization to allow storage vessels to arrive at the same time as skimming systems
- Position as closely as possible to skimming assets to minimize offloading time

Vessels of Opportunity (VOO)

- Use Byron Energy Inc.'s contracted resources as applicable
- Industry vessels are ideal for deployment of Vessel of Opportunity Skimming Systems (VOSS)
- Acquire additional resources as needed
- Consider use of local assets, i.e. fishing and pleasure craft for ISB operations or boom tending
- Expect mission specific and safety training to be required
- Plan with the US Coast Guard for vessel inspections
- Place VOOs in Division or Groups as needed
- Use organic on-board storage if appropriate
- Maximize non-organic storage appropriate to vessel limitations
- Decant as appropriate after approval to do so has been granted
- Assign bulk storage barges to each Division/Group
- Position bulk storage barges as close to skimming units as possible
- Utilize large skimming vessel (e.g. barges) storage for smaller vessel offloading
- Maximize skimming area (swath) to the optimum width given sea conditions and available equipment
- Maximize use of oleophilic skimmers in all operations, but especially offshore
- Nearshore, use shallow water barges and shuttle to skimming units to minimize offloading time
- Plan and equip to use all offloading capabilities of the storage vessel to minimize offloading time

Adverse Weather Operations:

In adverse weather, when seas are ≥ 3 feet, the use of larger recovery and storage vessels, oleophilic skimmers, and large offshore boom will be maximized. KOSEQ Arm systems are built for rough conditions, and they should be used until their operational limit (9.8' seas) is met. Safety will be the overriding factor in all operations and will cease at the order of the Unified Command, vessel captain, or in an emergency, "stop work" may be directed by any crew member.

Surface Oil Recovery Considerations and Tactics (Offshore and Near-shore Operations)

Maximization of skimmer-oil encounter rate

- Place barges in skimming task forces, groups, etc., to reduce recovered oil offloading time
- Place barges alongside skimming systems for immediate offloading of recovered oil when practicable
- Use two vessels, each with heavy sea boom, in an open-ended "V" configuration to funnel surface oil into a trailing skimming unit's organic, V-shaped boom and skimmer (see page 7, CGA Equipment Guide Book and Tactic Manual (CGATM)

- Use secondary vessels and heavy sea boom to widen boom swath beyond normal skimming system limits (see page 15, CGATM)
- Consider night-time operations, first considering safety issues
- Utilize all available advanced technology systems (IR, X-Band Radar, etc.) to determine the location of, and move to, recoverable oil
- Confirm the presence of recoverable oil prior to moving to a new location

Maximize skimmer system efficiency

- Place weir skimming systems in areas of calm seas and thick oil
- Maximize the use of oleophilic skimming systems in heavier seas
- Place less mobile, high EDRC skimming systems (e.g. HOSS Barge) in the largest pockets of the heaviest oil
- Maximize onboard recovered oil storage for vessels.
- Obtain authorization for decanting of recovered water as soon as possible
- Use smaller, more agile skimming systems to recover streamers of oil normally found farther from the source. Place recovered oil barges nearby

Recovered Oil Storage

- Smaller barges in larger quantities will increase flexibility for multi-location skimming operations
- Place barges in skimming task forces, groups, etc., to reduce recovered oil offloading time
- Procure and deploy the maximum number of portable tanks to support Vessel of Opportunity Skimming Systems if onboard storage is not available
- Maximize use of the organic recovered oil storage capacity of the skimming vessel

Command, Control, and Communications (C^3)

- Publish, implement, and fully test an appropriate communications plan
- Design an operational scheme, maintaining a manageable span of control
- Designate and mark C³ vessels for easy aerial identification
- Designate and employ C³ aircraft for task forces, groups, etc.
- Use reconnaissance air craft and Rapid Response Teams (RAT) to confirm the presence of recoverable oil

On Water Recovery Group

When the first skimming vessel arrives on scene, a complete site assessment will be conducted before recovery operations begin. Once it is confirmed that the air monitoring readings for O2, LEL, H2S, CO, VOC, and Benzene are all within the permissible limits, oil recovery operations may begin.

As skimming vessels arrive, they will be organized to work in areas that allow for the most efficient vessel operation and free vessel movement in the recovery of oil. Vessel groups will vary in structure as determined by the Operations Section of the Unified Command, but will generally consist, at a minimum, of the following dedicated assets:

- 3 to 5 Offshore skimming vessels (recovery)
- 1 Tank barge (temporary storage)
- 1 Air asset (tactical direction)
- 2 Support vessels (crew/utility for supply)
- 6 to 10 Boom vessels (enhanced booming)

Example (Note: Actual organization of TFs will be dependent on several factors including, asset availability, weather, spilled oil migration, currents, etc.)

The 95' FRV Breton Island out of Venice arrives on scene and conducts an initial site assessment. Air monitoring levels are acceptable and no other visual threats have been observed. The area is cleared for safe skimming operations. The Breton Island assumes command and control (CoC) of on-water recovery operations until a dedicated non-skimming vessel arrives to relieve it of those duties.

A second 95' FRV arrives and begins recovery operations alongside the Breton Island. Several more vessels begin to arrive, including a third 95' FRV out of Galveston, the HOSS Barge (High Volume Open Sea Skimming System) out of Harvey, a boom barge (CGA 300) with 25,000' of 42" auto boom out of Leeville, and 9 Fast Response Units (FRUs) from the load-out location at C-Port in Port Fourchon.

As these vessels set up and begin skimming, they are grouped into task forces (TFs) as directed by the Operations Section of the Unified Command located at the command post.

Initial set-up and potential actions:

- A 1,000 meter safety zone has been established around the incident location for vessels involved in Source Control
- The HOSS Barge is positioned facing the incident location just outside of this safety zone or at the point where the freshest oil is reaching the surface
- The HOSS Barge engages its Oil Spill Detection (OSD) system to locate the heaviest oil and maintains that ability for 24-hour operations

- The HOSS Barge deploys 1,320' of 67" Sea Sentry boom on each side, creating a swath width of 800'
- The Breton Island and H.I. Rich skim nearby, utilizing the same OSD systems as the HOSS Barge to locate and recover oil
- Two FRUs join this group and it becomes TF1
- The remaining 7 FRUs are split into a 2 and 3 vessel task force numbered TF2 and TF3
- A 95' FRV is placed in each TF
- The boom barge (CGA 300) is positioned nearby and begins deploying auto boom in sections between two utility vessels (1,000' to 3,000' of boom, depending on conditions) with chain-link gates in the middle to funnel oil to the skimmers
- The initial boom support vessels position in front of TF2 and TF3
- A 100,000+ barrel offshore tank barge is placed with each task force as necessary to facilitate the immediate offload of skimming vessels

The initial task forces (36 hours in) may be structured as follows:

TF 1

- 1-95' FRV
- 1 HOSS Barge with 3 tugs
- 2 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 8-500' sections of auto boom with gates
- 8 Boom-towing vessels
- 2 Support vessels (crew/utility)

TF 2

- 1-95' FRV
- 4 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 10-500' sections of auto boom with gates
- 10 Boom-towing vessels
- 2 Support vessels (crew/utility)

TF 3

- 1 95' FRV
- 3 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 8 500' sections of auto boom with gates
- 8 Boom-towing vessels
- 2 Support vessels (crew/utility)

Offshore skimming equipment continues to arrive in accordance with the ETA data listed in figure H.3a; this equipment includes 2 AquaGuard skimmers and 11 sets of Koseq Rigid Skimming Arms. These high volume heavy weather capable systems will be divided into functional groups and assigned to specific areas by the Operations Section of the Unified Command.

At this point of the response, the additional TFs may assume the following configurations:

TF 4

- 2 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 AquaGuard Skimmer
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

TF 5

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 AquaGuard Skimmer
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 8-500' sections of auto boom with gates
- 8 Boom-towing vessels

TF 6

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

TF 7

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

CGA Minimum Acceptable Capabilities for Vessels of Opportunity (VOO)

Minimum acceptable capabilities of Petroleum Industry Designed Vessels (PIDV) for conducting Vessel of Opportunity (VOO) skimming operations are shown in the table below. PIDVs are "purpose-built" to provide normal support to offshore oil and gas operators. They include but are not limited to utility boats, offshore supply vessels, etc. They become VOOs when tasked with oil spill response duties.

Capability	FRU	KOSEQ	AquaGuard
Type of Vessel	Utility Boat	Offshore Supply Vessel	Utility Boat
Operating parameters			
Sea State	3-5 ft max	9.8 ft max	3-5 ft max
Skimming speed	≤1 kt	\leq 3 kts	≤1 kt
Vessel size			
Minimum Length	100 ft	200 ft	100 ft
Deck space for: • Tank(s) • Crane(s) • Boom Reels • Hydraulic Power Units • Equipment Boyas	18x32 ft	100x40 ft	18x32 ft
Communication Assets	Marine Band Radio	Marine Band Radio	Marine Band Radio

Tactical use of Vessels of Opportunity (VOO): Byron Energy Inc. will take all possible measures to maximize the oil-to-skimmer encounter rate of all skimming systems, to include VOOs, as discussed in this section. VOOs will normally be placed within an On-water recovery unit as shown in figures below.

Skimming Operations: PIDVs are the preferred VOO skimming platform. OSROs are more versed in operating on these platforms and the vessels are generally large enough with crews more likely versed in spill response operations. They also have a greater possibility of having on-board storage capacity and the most likely vessels to be under contract, and therefore more readily available to the operator. These vessels would normally be assigned to an on-water recovery group/division (see figure below) and outfitted with a VOSS suited for their size and capabilities. Specific tactics used for skimming operations would be dependent upon many parameters which include, but are not limited to, safety concerns, weather, type VOSS on board, product being recovered, and area of oil coverage. Planners would deploy these assets with the objective of safely maximizing oil- to-skimmer encounter rate by taking actions to minimize non-skimming time and maximizing boom swath. Specific tactical configurations are shown in figures below.

The Fast Response Unit (FRU): A self-contained, skid based, skimming system that is deployed from the right side of a vessel of opportunity (VOO). An outrigger holds a 75' long section of air inflatable boom in place that directs oil to an apex for recovery via a Foilex 250 weir skimmer. The outrigger creates roughly a 40' swath width dependent on the VOO beam. The lip of the collection bowl on the skimmer is placed as close to the oil and water interface as possible to maximize oil recovery and minimize water retention. The skimmer then pumps all fluids recovered to the storage tank where it is allowed to settle, and with the approval of the containment boom to be recycled through the system. Once the tank is full of as much pure recovered oil as possible it is offloaded to a storage barge for disposal in accordance with an approved disposal plan. A second 100 barrel storage tank can be added if the appropriate amount of deck space is available to use as secondary storage.

Tactical Overview

Mechanical Recovery – The FRU is designed to provide fast response skimming capability in the offshore and nearshore environment in a stationary or advancing mode. It provides a rated daily recovery capacity of 4,100 barrels. An additional boom reel with 440' of offshore boom can be deployed along with the FRU, and a second support vessel for boom towing, to extend the swath width when attached to the end of the fixed boom. The range and sustainability offshore is dependent on the VOO that the unit is placed on, but generally these can stay offshore for extended periods. The FRU works well independently or assigned with other on-water recovery assets in a task force. In either case, it is most effective when a designated aircraft is assigned to provide tactical direction to ensure the best placement in recoverable oil.

Maximum Sea Conditions – Under most circumstances the FRU can maintain standard oil spill recovery operations in 2' to 4' seas. Ultimately, the Coast Guard licensed Captain in charge of the VOO (with input from the CGAS Supervisor assigned) will be responsible to determine when the sea conditions have surpassed the vessel's safe operating capabilities.

Possible Task Force Configuration (Multiple VOOs can be deployed in a task force)

- 1 VOO (100' to 165' Utility or Supply Vessel)
- 1 Boom reel w/support vessel for towing
- 1 Tank barge (offshore) for temporary storage
- 1 Utility/Crewboat (supply)
- 1 Designated spotter aircraft

The VOSS (yellow) is being deployed and connected to an out-rigged arm. This is suitable for collection in both large pockets of oil and for recovery of streaming oil. The oil-to-skimmer encounter rate is limited by the length of the arm. Skimming pace is ≤ 1 knot.

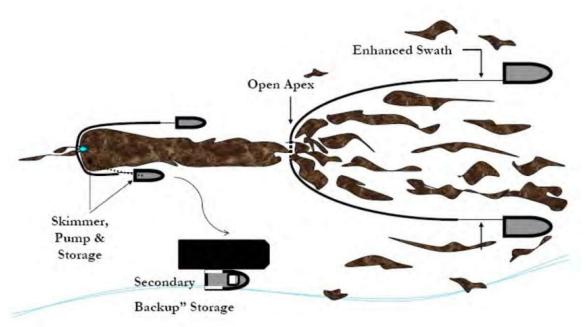
Through the use of an additional VOO, and using extended sea boom, the swath of the VOSS is increased therefore maximizing the oil-to-skimmer encounter rate. Skimming pace is ≤ 1 knot.

The Koseq Rigid Sweeping Arm: A skimming system deployed on a vessel of opportunity. It requires a large Offshore or Platform Supply Vessel (OSV/PSV), greater than 200' with at least 100' x 50' of free deck space. On each side of the vessel, a 50' long rigid framed Arm is deployed that consists of pontoon chambers to provide buoyancy, a smooth nylon face, and a hydraulically adjustable mounted weir skimmer. The Arm floats independently of the vessel and is attached by a tow bridle and a lead line. The movement of the vessel forward draws the rubber end seal of the arm against the hull to create a collection point for free oil directed to the weir by the Arm face. The collection weir is adjusted to keep the lip as close to the oil water interface as possible to maximize oil recovery while attempting to minimize excess water collection. A transfer pump (combination of positive displacement, screw type and centrifuge suited for highly viscous oils) pump the recovered liquid to portable tanks and/or dedicated fixed storage tanks onboard the vessel. After being allowed to sit and separate, with approval from the Coast Guard, the water can be decanted (pumped off) in front of the collection arm to be reprocessed through the system. Once full with as much pure recovered oil as possible, the oil is transferred to a temporary storage barge where it can be disposed of in accordance with an approved disposal plan.

Tactical Overview

Mechanical Recovery – Deployed on large vessels of opportunity (VOO) the Koseq Rigid Sweeping Arms are high volume surge capacity deployed to increase recovery capacity at the source of a large oil spill in the offshore and outer nearshore environment of the Gulf of Mexico. They are highly mobile and sustainable in rougher sea conditions than normal skimming vessels (9.8' seas). The large Offshore Supply Vessels (OSV) required to deploy the Arms are able to remain on scene for extended periods, even when sea conditions pick up. Temporary storage on deck in portable tanks usually provides between 1,000 and 3,000 bbls. In most cases, the OSV will be able to pump 20% of its deadweight into the liquid mud tanks in accordance with the vessels Certificate of Inspection (COI). All storage can be offloaded utilizing the vessels liquid transfer system.

Maximum Sea Conditions - Under most circumstances the larger OSVs are capable of remaining on scene well past the Skimming Arms maximum sea state of 9.8'. Ultimately it will be the decision of the VOO Captain, with input from the T&T Supervisor onboard, to determine when the sea conditions have exceeded the safe operating conditions of the vessel.


Command and Control – The large OSVs in many cases have state of the art communication and electronic systems, as well as the accommodations to support the function of directing all skimming operations offshore and reporting back to the command post.

Possible Task Force Configuration (Multiple Koseq VOOs can be deployed in a task force)

1 = 200' Offshore Supply Vessels (OSV) with set of Koseq Arms

2 to 4 portable storage tanks (500 bbl)

- 1 Modular Crane Pedestal System set (MCPS) or 30 cherry picker (crane) for deployment
- 1 Tank barge (offshore) for temporary storage
- 1 Utility/Crewboat (supply)
- 1 Designated spotter aircraft
- 4 Personnel (4 T&T OSRO)

Scattered oil is "caught" by two VOO and collected at the apex of the towed sea boom. The oil moves thought a "gate" at that apex, forming a larger stream of oil which moves into the boom of the skimming vessel. Operations are paced at >1. A recovered oil barge stationed nearby to minimize time taken to offload recovered oil.

This is a depiction of the same operation as above but using KOSEQ Arms. In this configuration, the collecting boom speed dictates the operational pace at ≥ 1 knot to minimize entrainment of the oil.

Clean Gulf Associates (CGA) Procedure for Accessing Member-Contracted and other Vessels of Opportunity (VOOs) for Spill Response

- CGA has procedures in place for CGA member companies to acquire vessels of opportunity (VOOs) from an existing CGA member's contracted fleet or other sources for the deployment of CGA portable skimming equipment including Koseq Arms, Fast Response Units (FRUs) and any other portable skimming system(s) deemed appropriate for the response for a potential or actual oil spill, WCD oil spill or a Spill of National Significance (SONS).
- CGA uses Port Vision, a web-based vessel and terminal interface that empowers CGA to track vessels through Automatic Identification System (AIS) and terminal activities using a Geographic Information System (GIS). It provides live AIS/GIS views of waterways showing current vessel positions, terminals, created vessel fleets, and points-of-interest. Through this system, CGA has the ability to get instant snapshots of the location and status of all vessels contracted to CGA members, day or night, from any web-enabled PC.

Near Shore Response Actions

Timing

- Put near shore assets on standby and deployment in accordance with planning based on the actual situation, actual trajectories and oil budgets
- VOO identification and training in advance of spill nearing shoreline if possible
- Outfitting of VOOs for specific missions
- Deployment of assets based on actual movement of oil

Considerations

- Water depth, vessel draft
- Shoreline gradient
- State of the oil
- Use of VOOs
- Distance of surf zone from shoreline

Surveillance

- Provide trained observer to direct skimming operations
- Continual surveillance of oil movement by remote sensing systems, aerial photography and visual confirmation
- Continual monitoring of vessel assets

Dispersant Use

- Generally will not be approved within 3 miles of shore or with less than 10 meters of water depth
- Approval would be at Regional Response Team level (Region 6)

Dedicated Near Shore skimming systems

- FRVs
- Egmopol and Marco SWS
- Operate with aerial spotter directing systems to observed oil slicks

VOO

- Use Byron Energy Inc.'s contracted resources as applicable
- Industry vessel are usually best for deployment of Vessel of Opportunity Skimming Systems (VOSS)
- Acquire additional resources as needed
- Consider use of local assets, i.e. fishing and pleasure craft
- Expect mission specific and safety training to be required
- Plan with the US Coast Guard for vessel inspections
- Operate with aerial spotter directing systems to oil patches

Shoreline Protection Operations

Response Planning Considerations

- Review appropriate Area Contingency Plan(s)
- Locate and review appropriate Geographic Response and Site Specific Plans
- Refer to appropriate Environmentally Sensitive Area Maps
- Capability for continual analysis of trajectories run periodically during the response
- Environmental risk assessments (ERA) to determine priorities for area protection
- Time to acquire personnel and equipment and their availability
- Refer to the State of Louisiana Initial Oil Spill Response Plan, Deep Water Horizon, dated 2 May 2010, as a secondary reference
- Aerial surveillance of oil movement
- Pre-impact beach cleaning and debris removal
- Shoreline Cleanup Assessment Team (SCAT) operations and reporting procedures
- Boom type, size and length requirements and availability
- Possibility of need for In-situ burning in near shore areas
- Current wildlife situation, especially status of migratory birds and endangered species in the area
- Check for Archeological sites and arrange assistance for the appropriate state agency when planning operations the may impact these areas

Placement of boom

- Position boom in accordance with the information gained from references listed above and based on the actual situation
- Determine areas of natural collection and develop booming strategies to move oil into those areas
- Assess timing of boom placement based on the most current trajectory analysis and the availability of each type of boom needed. Determine an overall booming priority and conduct booming operations accordingly. Consider:
 - Trajectories
 - Weather forecast
 - Oil Impact forecast
 - Verified spill movement
 - Boom, manpower and vessel (shallow draft) availability
 - Near shore boom and support material, (stakes, anchors, line)

Beach Preparation - Considerations and Actions

- Use of a 10 mile go/no go line to determine timing of beach cleaning
- SCAT reports and recommendations
- Determination of archeological sites and gaining authority to enter
- Monitoring of tide tables and weather to determine extent of high tides
- Pre cleaning of beaches by moving waste above high tide lines to minimize waste
- Determination of logistical requirements and arranging of waste removal and disposal

- Staging of equipment and housing of response personnel as close to the job site as possible to maximize on-site work time
- Boom tending, repair, replacement and security (use of local assets may be advantageous)
- Constant awareness of weather and oil movement for resource re-deployment as necessary
- Earthen berms and shoreline protection boom may be considered to protect sensitive inland areas
- Requisitioning of earth moving equipment
- Plan for efficient and safe use of personnel, ensuring:
 - A continual supply of the proper Personal Protective Equipment
 - Heating or cooling areas when needed
 - Medical coverage
 - Command and control systems (i.e. communications)
 - Personnel accountability measures
- Remediation requirements, i.e., replacement of sands, rip rap, etc.
- Availability of surface washing agents and associated protocol requirements for their use (see National Contingency Plan Product Schedule for list of possible agents)
- Discussions with all stakeholders, i.e., land owners, refuge/park managers, and others as appropriate, covering the following:
 - Access to areas
 - Possible response measures and impact of property and ongoing operations
 - Determination of any specific safety concerns
 - Any special requirements or prohibitions
 - Area security requirements
 - Handling of waste
 - Remediation expectations
 - Vehicle traffic control
 - Domestic animal safety concerns
 - Wildlife or exotic game concerns/issues

Inland and Coastal Marsh Protection and Response Considerations and Actions

- All considered response methods will be weighed against the possible damage they may do to the marsh. Methods will be approved by the Unified Command only after discussions with local Stakeholder, as identified above.
 - In-situ burn may be considered when marshes have been impacted
- Passive clean up of marshes should considered and appropriate stocks of sorbent boom and/or sweep obtained.
- Response personnel must be briefed on methods to traverse the marsh, i.e.,
 - use of appropriate vessel
 - use of temporary walkways or road ways
- Discuss and gain approval prior cutting or moving vessels through vegetation
- Discuss use of vessels that may disturb wildlife, i.e, airboats
- Safe movement of vessels through narrow cuts and blind curves

- Consider the possibility that no response in a marsh may be best
- In the deployment of any response asset, actions will be taken to ensure the safest, most efficient operations possible. This includes, but is not limited to:
 - Placement of recovered oil or waste storage as near to vessels or beach cleanup crews as possible.
 - Planning for stockage of high use items for expeditious replacement
 - Housing of personnel as close to the work site as possible to minimize travel time
 - Use of shallow water craft
 - Use of communication systems appropriate ensure command and control of assets
 - Use of appropriate boom in areas that I can offer effective protection
 - Planning of waste collection and removal to maximize cleanup efficiency
- Consideration or on-site remediation of contaminated soils to minimize replacement operations and impact on the area

Decanting Strategy

Recovered oil and water mixtures will typically separate into distinct phases when left in a quiescent state. When separation occurs, the relatively clean water phase can be siphoned or decanted back to the recovery point with minimal, if any, impact. Decanting therefore increases the effective on-site oil storage capacity and equipment operating time. FOSC/SOSC approval will be requested prior to decanting operations. This practice is routinely used for oil spill recovery.

CGA Equipment Limitations

The capability for any spill response equipment, whether a dedicated or portable system, to operate in differing weather conditions will be directly in relation to the capabilities of the vessel the system in placed on. Most importantly, however, the decision to operate will be based on the judgment of the Unified Command and/or the Captain of the vessel, who will ultimately have the final say in terminating operations. Skimming equipment listed below may have operational limits which exceed those safety thresholds. As was seen in the Deepwater Horizon (DWH) oil spill response, vessel skimming operations ceased when seas reached 5-6 feet and vessels were often recalled to port when those conditions were exceeded. Systems below are some of the most up-to-date systems available and were employed during the DWH spill.

Boom	3 foot seas, 20 knot winds
Dispersants	Winds more than 25 knots
	Visibility less than 3 nautical miles
	Ceiling less than 1,000 feet.
FRU	8 foot seas
HOSS Barge/OSRB	8 foot seas
Koseq Arms	8 foot seas
OSRV	4 foot seas

Environmental Conditions in the GOM

Louisiana is situated between the easterly and westerly wind belts, and therefore, experiences westerly winds during the winter and easterly winds in the summer. Average wind speed is generally 14-15 mph along the coast. Wave heights average 4 and 5 feet. However, during hurricane season, Louisiana has recorded wave heights ranging from 40 to 50 feet high and winds reaching speeds of 100 mph. Because much of southern Louisiana lies below sea level, flooding is prominent.

Surface water temperature ranges between 70 and 80°F during the summer months. During the winter, the average temperature will range from 50 and 60°F.

The Atlantic and Gulf of Mexico hurricane season is officially from 1 June to 30 November. 97% of all tropical activity occurs within this window. The Atlantic basin shows a very peaked season from August through October, with 78% of the tropical storm days, 87% of the minor (Saffir-Simpson Scale categories 1 and 2) hurricane days, and 96% of the major (Saffir-Simpson categories 3, 4 and 5) hurricane days occurring then. Maximum activity is in early to mid September. Once in a few years there may be a hurricane occurring "out of season" - primarily in May or December. Globally, September is the most active month and May is the least active month.

FIGURE 1 TRAJECTORY BY LAND SEGMENT

Trajectory of a spill and the probability of it impacting a land segment have been projected utilizing Byron Energy Inc.'s WCD and information in the BOEM Oil Spill Risk Analysis Model (OSRAM) for the Central and Western Gulf of Mexico available on the BOEM website using 30 day impact. The results are tabulated below.

Area/Block	OCS-G	Launch Area	Land Segment and/or Resource	Conditional Probability (%) within 10 days
> 10 Miles Drilling SM 58, Well Location A 58 miles from shore	G01194	C33	Kenedy, TX Kleberg, TX Nueces, TX Aransas, TX Calhoun, TX Matagorda, TX Brazoria, TX Galveston, TX Chambers, TX Jefferson, TX Cameron, LA Vermilion, LA Iberia, La St. Mary, LA Terrebonne, LA	1 1 1 2 7 4 10 1 8 21 8 21 8 2 1 2

WCD Scenario- BASED ON WELL BLOWOUT DURING DRILLING OPERATIONS (58 miles from shore)

37,419 bbls of crude oil (Volume considering natural weathering) API Gravity 35.9°

FIGURE 2 – Equipment Response Time: SM 58, Well Location A

		Dis	persants/Surveill	ance			
Dispersant/Surveillance	Dispersant Capacity (gal)	Persons Req.	From	Hrs to Procure	Hrs to Loadout	Travel to site	Total Hrs
		filler insulis / Da	ASI				
Basler 67T	2000	2	Houma	2	2	0.5	4.5
DC 3	1200	2	Houma	2	2	0.7	4.7
DC 3	1200	2	Houma	2	2	0.7	4.7
Aero Commander	NA	2	Houma	2	2	0.5	4.5

Offshore Equipment Pre-Determined Staging	EDRC	Storage Capacity	VOO	Persons Required	From	Hrs to Procure	Hrs to Loadout	Hrs to GOM	Travel to Spill Site	Hrs to Deploy	Total Hrs
	54 			C	GA	·*					
HOSS Barge	76285	4000	3 Tugs	12	Harvey	6	0	12	11	2	31
95' FRV	22885	249	NA	6	Galveston	2	0	2	8.5	1	13.5
95' FRV	22885	249	NA	6	Leeville	2	0	2	6	1	11
95' FRV	22885	249	NA	6	Venice	2	0	3	8.5	1	14.5
95' FRV	22885	249	NA	6	Vermilion	2	0	3	3	1	9
Boom Barge (CGA-300) 42" Auto Boom (25000')	NA	NA	1 Tug 50 Crew	4 (Barge) 2 (Per Crew)	Leeville	8	0	4	17	2	31
		Ente	erprise Marine	e Services LLC (A	vailable through	n contract wit	h CGA)				
CTCo 2608	NA	23000	1 Tug	6	Amelia	33	0	6	8	1	48
СТСо 2609	NA	23000	1 Tug	6	Amelia	33	0	6	8	1	48
	-		Kirby O	ffshore (available	through contract	t with CGA)			12		
RO Barge	NA	80000+	1 Tug	6	Venice	34	0	4	21	1	60
RO Barge	NA	130000+	1 Tug	6	Venice	34	0	4	21	1	60
RO Barge	NA	140000+	1 Tug	6	Venice	34	0	4	21	1	60
RO Barge	NA	150000+	1 Tug	6	Venice	34	0	4	21	1	60
RO Barge	NA	160000+	1 Tug	6	Venice	34	0	4	21	1	60

Offshore Response

Offshore Equipment With Staging	EDRC	Storage Capacity	V00	Persons Req.	From	Hrs to Procure	Hrs to Loadout	Travel to Staging	Travel to Site	Hrs to Deploy	Total Hrs
		n. <u>19</u> 2 - 19	T&T Ma	arine (availabl	e through direct contra	act with CGA)				
Aqua Guard Triton RBS (1)	22323	2000	1 Utility	6	Galveston	4	12	12	10	2	40
Aqua Guard Triton RBS (1)	22323	2000	1 Utility	6	Harvey	4	12	3	10	2	31
Koseq Skimming Arms (10) Lamor brush	228850	10000	5 OSV	30	Galveston	24	24	12	10	2	72
Koseq Skimming Arms (6) MariFlex 150 HF	108978	6000	3 OSV	18	Galveston	24	24	12	10	2	72
Koseq Skimming Arms (2) Lamor brush	45770	2000	1 OSV	6	Harvey	24	24	3	10	2	63
Koseq Skimming Arms (4) MariFlex 150 HF	72652	4000	2 OSV	12	Harvey	24	24	3	10	2	63
					CGA						
FRU (1) + 100 bbl Tank (2)	4251	200	1 Utility	6	Morgan City	2	6	3	10	1	22
FRU (1) + 100 bbl Tank (2)	4251	200	1 Utility	6	Vermilion	2	6	5.5	10	1	24.5
FRU (1) + 100 bbl Tank (2)	4251	200	1 Utility	6	Galveston	2	6	12	10	1	31
FRU (1) + 100 bbl Tank (2)	4251	200	1 Utility	6	Aransas Pass	2	6	16.5	10	1	35.5
FRU (1) + 100 bbl Tank (2)	4251	200	1 Utility	6	Lake Charles	2	6	7	10	1	26
FRU (2) + 100 bbl Tank (4)	8502	400	2 Utility	12	Leeville	2	6	2	10	ĩ	21
FRU (2) + 100 bbl Tank (4)	8502	400	2 Utility	12	Venice	2	6	5	10	1	24
Hydro-Fire Boom	NA	NA	8 Utility	40	Harvey	0	24	3	10	6	43

Staging Area: Fourchon

Nearshore Equipment Pre-determined Staging	EDRC	Storage Capacity	V00	Persons Required	From	Hrs to Procure	Hrs to Loadout	Hrs to GOM	Travel to Spill Site	Hrs to Deploy	Total Hrs
					CGA				на сос	2 800 900 S	
Mid-Ship SWS	22885	249	NA	4	Leeville	2	0	N/A	48	1	51
Mid-Ship SWS	22885	249	NA	4	Venice	2	0	N/A	48	1	51
Mid-Ship SWS	22885	249	NA	4	Galveston	2	0	N/A	48	1	51
Trinity SWS	21500	249	NA	4	Morgan City	2	0	N/A	48	1	51
Trinity SWS	21500	249	NA	4	Lake Charles	2	0	N/A	48	1	51
Trinity SWS	21500	249	NA	4	Vermilion	2	0	N/A	48	1	51
Trinity SWS	21500	249	NA	4	Galveston	2	0	N/A	48	1	51
46' FRV	15257	65	NA	4	Aransas Pass	2	0	2	16	1	21
46' FRV	15257	65	NA	4	Morgan City	2	0	2	6	1	11
46' FRV	15257	65	NA	4	Lake Charles	2	0	2	2.5	1	7.5
46' FRV	15257	65	NA	4	Venice	2	0	2	11	1	16
		2000 Se	Kirby (Offshore (Ava	ilable through contract	with CGA)					
RO Barge	NA	80000+	1 Tug	6	Venice	34	0	4	21	1	60
		Ent	terprise Mari	ne Services L	LC (Available through	contract with	n CGA)				2)
CTCo 2603	NA	25000	1 Tug	6	Amelia	26	0	6	15	1	48
CTCo 2604	NA	20000	1 Tug	6	Amelia	26	0	6	15	1	48
CTCo 2605	NA	20000	1 Tug	6	Amelia	26	0	6	15	1	48
CTCo 2606	NA	20000	1 Tug	6	Amelia	26	0	6	15	1	48
СТСо 2607	NA	23000	1 Tug	6	Amelia	26	0	6	15	1	48
CTCo 5001	NA	47000	1 Tug	6	Amelia	26	0	6	15	1	48

Nearshore Response

Nearshore Equipment With Staging	EDRC	Storage Capacity	VOO	Persons Req.	From	Hrs to Procure	Hrs to Load Out	Travel to Staging	Travel to Deployment	Hrs to Deploy	Total Hrs
ಂಡು					CGA		-		-	a 9749 (94) J	
SWS Egmopol	1810	100	NA	3	Galveston	2	2	5	2	1	12
SWS Egmopol	1810	100	NA	3	Morgan City	2	2	4.5	2	1	11.5
SWS Marco	3588	20	NA	3	Lake Charles	2	2	2	2	1	9
SWS Marco	3588	34	NA	3	Leeville	2	2	7	2	1	14
SWS Marco	3588	34	NA	3	Venice	2	2	9.5	2	1	16.5
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Lake Charles	4	12	2	2	2	22
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Galveston	4	12	5	2	2	25
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Harvey	4	12	7	2	2	27
4 Drum Skimmer (Magnum 100)	680	100	1 Crew	3	Lake Charles	2	2	2	2	1	9
4 Drum Skimmer (Magnum 100)	680	100	1 Crew	3	Harvey	2	2	7	2	1	14
2 Drum Skimmer (TDS 118)	240	100	1 Crew	3	Lake Charles	2	2	2	2	1	9
2 Drum Skimmer (TDS 118)	240	100	1 Crew	3	Harvey	2	2	7	2	1	14

Staging Area: Cameron

Shoreline Protection

Staging Area: Came	ron										
Shoreline Protection Boom	VOO	Persons Req.	Storage/Warehouse Location	Hrs to Procure	Hrs to Loadout	Travel to Staging	Travel to Deployment Site	Hrs to Deploy	Total Hrs		
OMI Environmental (available through MSA)											
12,500' 18" Boom	6 Crew	12	New Iberia, LA	1	1	4	2	3	11		
6,400' 18" Boom	3 Crew	6	Houston, TX	1	1	4	2	3	11		
3,500' 18" Boom	2 Crew	4	Port Arthur, TX	1	1	2	2	3	9		
8,000' 18" Boom	3 Crew	6	Port Allen, LA	1	1	5	2	3	12		
2,500' 18" Boom	1 Crew	2	Morgan City, LA	1	1	5	2	3	12		
1,000' 18" Boom	1 Crew	2	Hackberry, LA	1	1	1	2	3	8		

Wildlife Response	EDRC	Storage Capacity	VOO	Persons Req.	From	Hrs to Procure	Hrs to Loadout	Travel to Staging	Travel to Deployment	Hrs to Deploy	Total Hrs
					CGA						
Wildlife Support Trailer	NA	NA	NA	2	Harvey	2	2	7	1	2	14
Bird Scare Guns (24)	NA	NA	NA	2	Harvey	2	2	7	1	2	14
Bird Scare Guns (12)	NA	NA	NA	2	Galveston	2	2	5	1	2	12
Bird Scare Guns (12)	NA	NA	NA	2	Aransas Pass	2	2	9.5	I	2	16.5
Bird Scare Guns (48)	NA	NA	NA	2	Lake Charles	2	2	2	1	2	9
Bird Scare Guns (24)	NA	NA	NA	2	Leeville	2	2	7	1	2	14

Response Asset	Total
Offshore EDRC	706,980
Offshore Recovered Oil Capacity	738,796+
Nearshore / Shallow Water EDRC	235,300
Nearshore / Shallow Water Recovered Oil Capacity	237,841+

SECTION 9 ENVIRONMENTAL MONITORING INFORMATION

9.1 MONITORING SYSTEMS

There are no environmental monitoring systems currently in place or planned for the proposed activities.

9.2 INCIDENTAL TAKES

There is no reason to believe that any of the endangered species or marine mammals as listed in the Endangered Species Act (ESA) will be "taken" as a result of the operations proposed under this plan.

It has been documented that the use of explosives and or seismic devices can affect marine life. Operations proposed in this plan will not be utilizing either of these devices.

Byron will adhere to the requirements as set forth in the following documents, as applicable, to avoid or minimize impacts to any of the species listed in the ESA as a result of the operations conducted herein:

- NTL No. 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination"
- NTL No. 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting"
- NTL No. 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program"

9.3 FLOWER GARDEN BANKS NATIONAL MARINE SANCTUARY

South Marsh Island Block 58 is not located in the Flower Garden Banks National Marine Sanctuary; therefore, relevant information is not required in this EP.

SECTION 10 LEASE STIPULATIONS INFORMATION

Exploration activities are subject to the following stipulations attached to Lease OCS-G 01194, South Marsh Island block 58.

10.1 MILITARY WARNING AREA (MWA)

Lease OCS-G 01194, South Marsh Island Block 58 is located within designated MWA-59 BC. The Naval Air Station in New Orleans, Louisiana will be contacted in order to coordinate and control the electromagnetic emissions and use of vessels and aircraft during the proposed operations.

10.2 MARINE PROTECTED SPECIES

In accordance with the Federal Endangered Species Act and the Marine Mammal Protection Act, Byron will:

(a) Collect and remove flotsam resulting from activities related to exploration, development, and production of this lease;

(b) Post signs in prominent places on all vessels and platforms used as a result of activities related to exploration, development, and production of this lease detailing the reasons (legal and ecological) why release of debris must be eliminated;

(c) Observe for marine mammals and sea turtles while on vessels, reduce vessel speed to 10 knots or less when assemblages of cetaceans are observed, and maintain a distance of 90 meters or greater from whales, and a distance of 45 meters or greater from small cetaceans and sea turtles;

(d) Employ mitigation measures prescribed by BOEM/BSEE or the National Marine Fisheries Service (NMFS) for all seismic surveys, including the use of an "exclusion zone" based upon the appropriate water depth, ramp-up and shutdown procedures, visual monitoring, and reporting;

(e) Identify important habitats, including designated critical habitat, used by listed species (e.g., sea turtle nesting beaches, piping plover critical habitat), in oil spill contingency planning and require the strategic placement of spill cleanup equipment to be used only by personnel trained in less-intrusive cleanup techniques on beaches and bay shores; and

(f) Immediately report all sightings and locations of injured or dead protected species (e.g., marine mammals and sea turtles) to the appropriate stranding network. If oil and gas industry activity is responsible for the injured or dead animal (e.g., because of a vessel strike), the responsible parties should remain available to assist the stranding network. If the injury or death was caused by a collision with the lessee's vessel, the lessee must notify BOEM within 24 hours of the strike.

BOEM and BSEE issue Notices to Lessees (NTLs), which more fully describe measures implemented in support of the above-mentioned implementing statutes and regulations, as well as measures identified by the U.S. Fish and Wildlife Service and NMFS arising from, among others, conservation recommendations, rulemakings pursuant to the MMPA, or consultation. The lessee and its operators, personnel, and subcontractors, while undertaking activities authorized under this lease, must implement and comply with the specific mitigation measures outlined in NTL No. 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting;" NTL No. 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program;" and NTL No. 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination." At the lessee's option, the lessee, its operators, personnel, and contractors may comply with the most current measures to protect species in place at the time an activity is undertaken under this lease, including but not limited to new or updated versions of the NTLs identified in this paragraph. The lessee and its operators, personnel, and subcontractors will be required to comply with the mitigation measures, identified in the above referenced NTLs, and additional measures in the conditions of approvals for their plans or permits.

SECTION 11 ENVIRONMENTAL MITIGATION MEASURES INFORMATION

11.1 MEASURES TAKEN TO AVOID, MINIMIZE, AND MITIGATE IMPACTS

This plan does not propose activities for which the state of Florida is an affected state; therefore, mitigation information is not required for the activities proposed in this plan.

11.2 INCIDENTAL TAKES

Byron will adhere to the requirements as set forth in the following documents, as applicable, to avoid or minimize impacts to any of the species listed in the Endangered Species Act (ESA) as a result of the operations conducted herein:

- NTL No. 2012-BSEE-G01, "Marine Trash and Debris Awareness and Elimination"
- NTL No. 2012-JOINT-G01, "Vessel Strike Avoidance and Injured/Dead Protected Species Reporting"
- NTL No. 2012-JOINT-G02, "Implementation of Seismic Survey Mitigation Measures and Protected Species Observer Program"

SECTION 12 SUPPORT VESSELS AND AIRCRAFT INFORMATION

12.1 GENERAL

The most practical, direct route from the shorebase as permitted by weather and traffic conditions will be utilized. Information regarding the vessels and aircraft to be used to support the proposed activities is provided in the table below.

Туре	Maximum Fuel Tank Capacity	Maximum Number in Area at Any Time	Trip Frequency or Duration
Tug boat	3000 bbl	2	2 times total
Crew boat	1000 bbl	1	3 X weekly
Supplyboat	1800 bbl	1	7 X weekly
Helicopter	560 gal	As required	As required

12.2 DIESEL OIL SUPPLY VESSELS

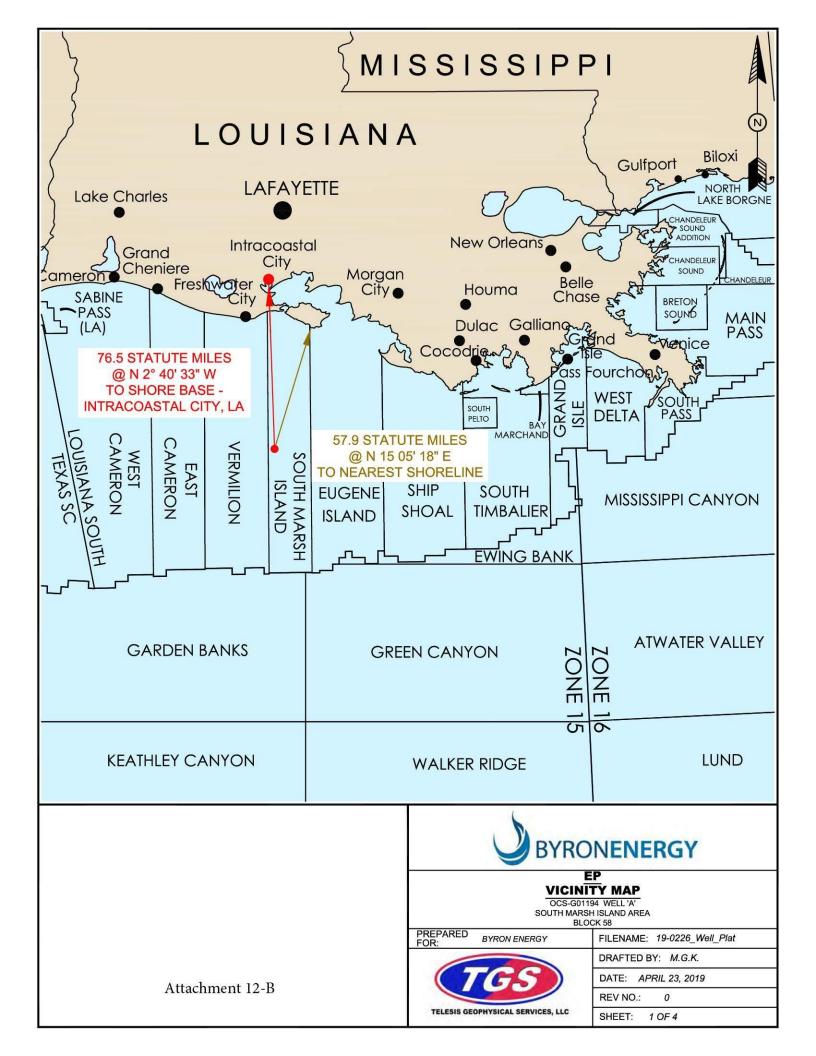
Information regarding vessels to be used to supply diesel oil for fuel and other purposes is provided in the table below.

Size of Fuel Supply	Capacity of Fuel	Frequency of Fuel	Route Fuel Supply	
Vessel (ft)	Supply Vessel	Transfers	Vessel will take	
205'	1800 bbls	1X weekly	Shortest route from Shorebase to block	

12.3 DRILLING FLUID TRANSPORTATION

Drilling fluid transportation information is not required to be submitted with this plan.

12.4 SOLID AND LIQUID WASTE TRANSPORTATION


A table, "Wastes You Will Transport and/or Dispose of Onshore," is included as Attachment 12-A.

12.5 VICINITY MAP

A vicinity map showing the location of the activities proposed herein relative to the shoreline with the distance of the proposed activities from the shoreline and the primary route of the support vessels and aircraft that will be used when traveling between the onshore support facilities and the drilling unit is included as **Attachment 12-B**.

TABLE 2. WASTE AND SURPLUS ESTIMATED TO BE TRANSPORTED AND/OR DISPOSED OF ONSHORE

	Projected generated waste	Solid and Liquid Wastes transportation	Waste Disposal			
Type of Waste Composition		Transport Method	Name/Location of Facility	Amount	Disposal Method	
Il drilling occur ? If yes, fill in the muds a	nd cuttings.					
Oil-based drilling fluid or mud	N/A	N/A	N/A	N/A	N/A	
Synthetic-based drilling fluid or mud	N/A	N/A	N/A	N/A	N/A	
Cuttings wetted with Water-based fluid	N/A	N/A	N/A	N/A	N/A	
Cuttings wetted with Synthetic-based fluid	N/A	N/A	N/A	N/A	N/A	
Cuttings wetted with oil-based fluids	N/A	N/A	N/A	N/A	N/A	
l you produce hydrocarbons? If yes fill in	for produced sand.			Caralles Fr		
Produced sand	N/A	N/A	N/A	N/A	N/A	
l you have additional wastes that are not p in the appropriate rows.	permitted for discharge? If yes,		See Street	Store Co.		
Trash and debris	Plastic, paper, aluminum	Storage bins on crew boat	Solid Waste, Abbeville, LA	1000 cu ft / well	Landfill	
Used oil	Motor oil	Drums on crew boat	Newpark Environmental, Intracoastal City, LA	50 lbs / well	Recycled	
Wash water	N/A					
Chemical product wastes	Paints, solvents, batteries	Storage bins on supply or crew boat	Newpark Environmental, Intracoastal City, LA	10 gal / yr	Recycled	

SECTION 13 ONSHORE SUPPORT FACILITIES INFORMATION

13.1 GENERAL

The onshore facilities that will be used to provide supply and service support for the proposed activities is provided in the table below.

Name	Location	Existing/New/Modified		
TBD	Intracoastal City, LA	Existing		
Petroleum Helicopters, Inc.	Intracoastal City, Louisiana	Existing		

13.2 SUPPORT BASE CONSTRUCTION OR EXPANSION

There will be no new construction of an onshore support base, nor will Byron expand the existing shorebase as a result of the operations proposed in this EP.

13.3 SUPPORT BASE CONSTRUCTION OR EXPANSION TIMETABLE

A support base construction or expansion timetable is not required for the activities proposed in this plan.

13.4 WASTE DISPOSAL

The Table, "Wastes You Will Transport and/or Dispose of Onshore, "is included as **Attachment 12-A**.

SECTION 14 COASTAL ZONE MANAGEMENT ACT (CZMA) INFORMATION

Under direction of the Coastal Zone Management Act (CZMA), the state of Louisiana developed a Coastal Zone Management Program (CZMP) to allow for the supervision of significant land and water use activities that take place within or that could significantly affect Louisiana's coastal zone.

Proposed activities are 58 miles from the Louisiana shore. Measures will be taken to avoid or mitigate the probable impacts. Byron will operate in compliance with existing federal and state laws, regulations, and resultant enforceable program policies in Louisiana's Coastal Zone Management Program.

The OCS related oil and gas exploratory and development activities having potential impact on the Louisiana Coastal Zone are based on the location of the proposed facilities, access to those sites, best practical techniques for drilling locations, drilling equipment guidelines for the prevention of adverse environmental effects, effective environmental protection, emergency plans and contingency plans.

Relevant enforceable policies were considered in certifying consistency for Louisiana. A certificate of Coastal Zone Management Consistency for the state of Louisiana is included as **Attachment 14-A**.

COASTAL ZONE MANAGEMENT CONSISTENCY CERTIFICATION INITIAL EXPLORATION PLAN SOUTH MARSH ISLAND BLOCK 58 OCS-G 01194

The proposed activity complies with the enforceable policies of the Louisiana approved management program and will be conducted in a manner consistent with such program.

Byron Energy Inc.

Lessee or Operator

Punt H Kullesen

Certifying Official

3 MAY 2019

Date

Attachment 14-A

SECTION 15 ENVIRONMENTAL IMPACT ANALYSIS

The Environmental Impact Analysis is included as Attachment 15-A.

Byron Energy Inc. (Byron)

Supplemental Exploration Plan South Marsh Island Block 58 OCS-G 01194

(A) IMPACT PRODUCING FACTORS

ENVIRONMENTAL IMPACT ANALYSIS WORKSHEET

Environment Resources	Impact Producing Factors (IPFs) Categories and Examples Refer to recent GOM OCS Lease Sale EIS for a more complete list of IPFs						
	Emissions (air, noise, light, etc.)	Effluents (muds, cutting, other discharges to the water column or seafloor)	Physical disturbances to the seafloor (rig or anchor emplacements, etc.)	Wastes sent to shore for treatment or disposal	Accidents (e.g., oil spills, chemical spills, H ₂ S releases)	Discarded Trash & Debris	
Site-specific at Offshore Location							
Designated topographic features		(1)	(1)		(1)		
Pinnacle Trend area live bottoms		(2)	(2)		(2)		
Eastern Gulf live bottoms		(3)	(3)		(3)		
Benthic communities			(4)				
Water quality	8	x	X		Х		
Fisheries		X	X		Х		
Marine Mammals	X(8)	X			X(8)	X	
Sea Turtles	X(8)	X			X(8)	X	
Air quality	X(9)						
Shipwreck sites (known or potential)			(7)				
Prehistoric archaeological sites			X(7)				
Vicinity of Offshore Location	-					(
Essential fish habitat		x	X		X(6)		
Marine and pelagic birds	X				X	X	
Public health and safety					(5)		
Coastal and Onshore							
Beaches					X(6)	X	
Wetlands					X(6)		
Shore birds and coastal nesting birds					X(6)	X	
Coastal wildlife refuges					Х		
Wilderness areas					x		

Footnotes for Environmental Impact Analysis Matrix

- 1) Activities that may affect a marine sanctuary or topographic feature. Specifically, if the well or platform site or any anchors will be on the seafloor within the:
 - o 4-mile zone of the Flower Garden Banks, or the 3-mile zone of Stetson Bank;
 - 1000-m, 1-mile or 3-mile zone of any topographic feature (submarine bank) protected by the Topographic Features Stipulation attached to an OCS lease;
 - Essential Fish Habitat (EFH) criteria of 500 ft. from any no-activity zone; or
 - Proximity of any submarine bank (500 ft. buffer zone) with relief greater than 2 meters that is not protected by the Topographic Features Stipulation attached to an OCS lease.
- 2) Activities with any bottom disturbance within an OCS lease block protected through the Live Bottom (Pinnacle Trend) Stipulation attached to an OCS lease.
- 3) Activities within any Eastern Gulf OCS block where seafloor habitats are protected by the Live Bottom (Low-Relief) Stipulation attached to an OCS lease.
- 4) Activities on blocks designated by the BOEM as being in water depths 300 meters or greater.
- 5) Exploration or production activities where H2S concentrations greater than 500 ppm might be encountered.
- 6) All activities that could result in an accidental spill of produced liquid hydrocarbons or diesel fuel that you determine would impact these environmental resources. If the proposed action is located a sufficient distance from a resource that no impact would occur, the EIA can note that in a sentence or two.
- 7) All activities that involve seafloor disturbances, including anchor emplacements, in any OCS block designated by the BOEM as having high-probability for the occurrence of shipwrecks or prehistoric sites, including such blocks that will be affected that are adjacent to the lease block in which your planned activity will occur. If the proposed activities are located a sufficient distance from a shipwreck or a prehistoric site that no impact would occur, the EIA can note that in a sentence or two.
- 8) All activities that you determine might have an adverse effect on endangered or threatened marine mammals or sea turtles or their critical habitats.
- 9) Production activities that involve transportation of produced fluids to shore using shuttle tankers or barges.

(B) ANALYSIS

Site-Specific at South Marsh Island Block 58

Proposed operations consist of the drilling and mudline suspension of location A. Operations will be conducted with a Jackup MODU.

1. Designated Topographic Features

Potential IPFs on topographic features include physical disturbances to the seafloor, effluents, and accidents.

Physical disturbances to the seafloor: South Marsh Island Block 58 is 30 miles from the closest designated Topographic Features Stipulation Block (Sonnier Bank); therefore, no adverse impacts are expected.

Effluents: South Marsh Island Block 58 is 30 miles from the closest designated Topographic Features Stipulation Block (Sonnier Bank); therefore, no adverse impacts are expected.

Accidents: It is unlikely that an accidental surface or subsurface spill would occur from the proposed activities (refer to statistics in Item 5, Water Quality). Oil spills cause damage to benthic organisms only if the oil contacts the organisms. Oil from a surface spill can be driven into the water column; measurable amounts have been documented down to a 10 m depth. At this depth, the oil is found only at concentrations several orders of magnitude lower than the amount shown to have an effect on corals. Because the crests of topographic features in the Northern Gulf of Mexico are found below 10 m, no oil from a surface spill could reach their sessile biota. Oil from a subsurface spill is not applicable due to the distance of these blocks from a topographic area. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

There are no other IPFs (including emissions and wastes sent to shore for disposal) from the proposed activities, which could impact topographic features.

2. Pinnacle Trend Area Live Bottoms

Potential IPFs on pinnacle trend area live bottoms include physical disturbances to the seafloor, effluents, and accidents.

Physical disturbances to the seafloor: South Marsh Island Block 58 is 221 miles from the closest live bottom (pinnacle trend) area; therefore, no adverse impacts are expected.

Effluents: South Marsh Island Block 58 is 221 miles from the closest live bottom (pinnacle trend) area; therefore, no adverse impacts are expected.

Accidents: It is unlikely that an accidental surface or subsurface spill would occur from the proposed activities (refer to statistics in Item 5, Water Quality). Oil spills have the potential to foul benthic communities and cause lethal and sublethal effects on live bottom organisms. Oil from a surface spill can be driven into the water column; measurable amounts have been documented down to a 10 m depth. At this depth, the oil is found only at concentrations several orders of magnitude lower than the amount shown to have an effect on marine organisms. Oil from a subsurface spill is not applicable due to the distance of these blocks from a live bottom (pinnacle trend) area. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

There are no other IPFs (including emissions and wastes sent to shore for disposal) from the proposed activities which could impact a live bottom (pinnacle trend) area.

3. Eastern Gulf Live Bottoms

Potential IPFs on Eastern Gulf live bottoms include physical disturbances to the seafloor, effluents, and accidents.

Physical disturbances to the seafloor: South Marsh Island Block 58 is not located in an area characterized by the existence of live bottoms, and this lease does not contain a Live-Bottom Stipulation requiring a photo documentation survey and survey report.

Effluents: South Marsh Island Block 58 is not located in an area characterized by the existence of live bottoms; therefore, no adverse impacts are expected.

Accidents: It is unlikely that an accidental surface or subsurface spill would occur from the proposed activities (refer to statistics in Item 5, Water Quality). Oil spills cause damage to live bottom organisms only if the oil contacts the organisms. Oil from a surface spill can be driven into the water column; measurable amounts have been documented down to a 10 m depth. At this depth, the oil is found only at concentrations several orders of magnitude lower than the amount shown to have an effect on marine invertebrates. Oil from a subsurface spill is not applicable due to the distance of these blocks from a live bottom area. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

There are no other IPFs (including emissions and wastes sent to shore for disposal) from the proposed activities which could impact an Eastern Gulf live bottom area.

4. Benthic Communities

There are no IPFs (including emissions, physical disturbances to the seafloor, wastes sent to shore for disposal, or accidents) from the proposed activities that could cause impacts to benthic communities.

Operations proposed in this plan are in water depths of 130 feet. High-density benthic communities are found only in water depths greater than 984 feet (300 meters); therefore, Byron's proposed operations in South Marsh Island Block 58 would not cause impacts to benthic communities.

5. Water Quality

IPFs that could result in water quality degradation from the proposed operations in South Marsh Island Block 58 include disturbances to the seafloor, effluents and accidents.

Physical disturbances to the seafloor: Bottom area disturbances resulting from the emplacement of drill rigs, the drilling of wells and the installation of platforms and pipelines would increase water-column turbidity and re-suspension of any accumulated pollutants, such as trace metals and excess nutrients. This would cause short-lived impacts on water quality conditions in the immediate vicinity of the emplacement operations.

Effluents: Levels of contaminants in drilling muds and cuttings and produced water discharges, discharge-rate restrictions and monitoring and toxicity testing are regulated by the EPA NPDES permit, thereby eliminating many significant biological or ecological effects. Operational discharges are not expected to cause significant adverse impacts to water quality.

Accidents: Oil spills have the potential to alter offshore water quality; however, it is unlikely that an accidental surface or subsurface spill would occur from the proposed activities. Between 1980 and 2000, OCS operations produced 4.7 billion barrels of oil and spilled only 0.001 percent of this oil, or 1 bbl for every 81,000 bbl produced. The spill risk related to a diesel spill from drilling operations is even less. Between 1976 and 1985, (years for which data were collected), there were 80 reported diesel spills greater than one barrel associated with drilling activities. Considering that there were 11,944 wells drilled, this is a 0.7 percent probability of an occurrence. If a spill were to occur, the water quality of marine waters would be temporarily affected by the dissolved components and small oil droplets. Dispersion by currents and microbial degradation would remove the oil from the water column and dilute the constituents to background levels. Historically, changes in offshore water quality from oil spills have only been detected during the life of the spill and up to several months afterwards. Most of the components of oil are insoluble in water and therefore float. The activities proposed in this plan will be covered by Byron's Regional Oil Spill Response Plan (refer to information submitted in Section 8).

There are no other IPFs (including emissions, physical disturbances to the seafloor, and wastes sent to shore for disposal) from the proposed activities which could cause impacts to water quality.

6. Fisheries

IPFs that could cause impacts to fisheries as a result of the proposed operations in South Marsh Island Block 58 include physical disturbances to the seafloor, effluents and accidents.

Physical disturbances to the seafloor: The emplacement of a structure or drilling rig results in minimal loss of bottom trawling area to commercial fishermen. Pipelines cause gear conflicts which result in losses of trawls and shrimp catch, business downtime and vessel damage. Most financial losses from gear conflicts are covered by the Fishermen's Contingency Fund (FCF). The emplacement and removal of facilities are not expected to cause significant adverse impacts to fisheries.

Effluents: Effluents such as drilling fluids and cuttings discharges contain components and properties which are detrimental to fishery resources. Moderate petroleum and metal contamination of sediments and the water column can occur out to several hundred meters down-current from the discharge point. Offshore discharges are expected to disperse and dilute to very near background levels in the water column or on the seafloor within 3,000 m of the discharge point, and are expected to have negligible effect on fisheries.

Accidents: An accidental oil spill has the potential to cause some detrimental effects on fisheries; however, it is unlikely that such an event would occur from the proposed activities (refer to Item 5, Water Quality). The effects of oil on mobile adult finfish or shellfish would likely be sublethal and the extent of damage would be reduced to the capacity of adult fish and shellfish to avoid the spill, to metabolize hydrocarbons, and to excrete both metabolites and parent compounds. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

There are no IPFs from emissions, or wastes sent to shore for disposal from the proposed activities which could cause impacts to fisheries.

7. Marine Mammals

GulfCet II studies revealed that cetaceans of the continental shelf and shelf-edge were almost exclusively bottlenose dolphin and Atlantic spotted dolphin. Squid eaters, including dwarf and pygmy killer whale, Risso's dolphin, rough-toothed dolphin, and Cuvier's beaked whale, occurred most frequently along the upper slope in areas outside of anticyclones. IPFs that could cause impacts to marine mammals as a result of the proposed operations in South Marsh Island Block 58 include emissions, effluents, discarded trash and debris, and accidents. **Emissions:** Noises from drilling activities, support vessels and helicopters may elicit a startle reaction from marine mammals. This reaction may lead to disruption of marine mammals' normal activities. Stress may make them more vulnerable to parasites, disease, environmental contaminants, and/or predation (Majors and Myrick, 1990). There is little conclusive evidence for long-term displacements and population trends for marine mammals relative to noise.

Effluents: Drilling fluids and cuttings discharges contain components which may be detrimental to marine mammals. Most operational discharges are diluted and dispersed upon release. Any potential impact from drilling fluids would be indirect, either as a result of impacts on prey items or possibly through ingestion in the food chain (API, 1989).

Discarded trash and debris: Both entanglement in, and ingestion of debris have caused the death or serious injury of marine mammals (Laist, 1997; MMC, 1999). The limited amount of marine debris, if any, resulting from the proposed activities is not expected to substantially harm marine mammals. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA).

Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on all vessels and facilities having sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

Accidents: Collisions between support vessels and cetaceans would be unusual events, however should one occur, death or injury to marine mammals is possible. Contract vessel operators can avoid marine mammals and reduce potential deaths by maintaining a vigilant watch for marine mammals and maintaining a safe distance when they are sighted. Vessel personnel should use a Gulf of Mexico reference guide to help identify the twenty-one species of whales and dolphins, and the single species of manatee that may be encountered in the Gulf of Mexico OCS. Vessel personnel must report sightings of any injured or dead protected marine mammal species

immediately, regardless of whether the injury or death is caused by their vessel, to the NMFS Southeast Marine Mammal Stranding Hotline at 1-877-433-8299 (http://www.nmfs.noaa.gov/pr/health/report.htm#southeast). Any injured or dead protected species should also be reported to takereport.nmfsser@noaa.gov. In addition, if the injury or death was caused by a collision with a contract vessel, the BOEM must be notified within 24 hours of the strike by email to protectedspecies@bsee.gov. If the vessel is the responsible party, it is required to remain available to assist the respective salvage and stranding network as needed.

Oil spills have the potential to cause sublethal oil-related injuries and spill-related deaths to marine mammals. However, it is unlikely that an accidental oil spill would occur from the proposed activities (refer to **Item 5**, Water Quality). Oil spill response activities may increase vessel traffic in the area, which could add to changes in cetacean behavior and/or distribution, thereby causing additional stress to the animals. The effect of oil dispersants on cetaceans is not known. The acute toxicity of oil dispersant chemicals included in Byron's OSRP is considered to be low when compared with the constituents and fractions of crude oils and diesel products. The activities proposed in this plan will be covered by Byron's OSRP (refer to information submitted in accordance with **Section 8**).

There are no other IPFs (including physical disturbances to the seafloor) from the proposed activities which could impact marine mammals.

8. Sea Turtles

IPFs that could cause impacts to sea turtles as a result of the proposed operations include emissions, effluents, discarded trash and debris, and accidents. GulfCet II studies sighted most loggerhead, Kemp's ridley and leatherback sea turtles over shelf waters. Historically these species have been sighted up to the shelf's edge. They appear to be more abundant east of the Mississippi River than they are west of the river (Fritts et al., 1983b; Lohoefener et al., 1990). Deep waters may be used by all species as a transitory habitat.

Emissions: Noise from drilling activities, support vessels, and helicopters may elicit a startle reaction from sea turtles, but this is a temporary disturbance.

Effluents: Drilling fluids and cuttings discharges are not known to be lethal to sea turtles. Most operational discharges are diluted and dispersed upon release. Any potential impact from drilling fluids would be indirect, either as a result of impacts on prey items or possibly through ingestion in the food chain (API, 1989).

Discarded trash and debris: Both entanglement in, and ingestion of, debris have caused the death or serious injury of sea turtles (Balazs, 1985). The limited amount of marine debris, if any, resulting from the proposed activities is not expected to substantially harm sea turtles. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the

Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on all vessels and facilities having sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

Accidents: Collisions between support vessels and sea turtles would be unusual events, however should one occur, death or injury to sea turtles is possible. Contract vessel operators can avoid sea turtles and reduce potential deaths by maintaining a vigilant watch for sea turtles and maintaining a safe distance when they are sighted. Vessel crews should use a reference guide to help identify the five species of sea turtles that may be encountered in the Gulf of Mexico OCS. Vessel crews must report sightings of any injured or dead protected sea turtle species immediately, regardless of whether the injury or death is caused by their vessel, to the State Coordinators for the Sea Turtle Stranding and Salvage Network (STSSN) at http://www.sefsc.noaa.gov/species/turtles/stranding coordinators.htm (phone numbers vary by Any injured or dead protected species should also be reported to state). takereport.nmfsser@noaa.gov. In addition, if the injury or death was caused by a collision with a contract vessel, the BOEM must be notified within 24 hours of the strike by email to protectedspecies@bsee.gov. If the vessel is the responsible party, it is required to remain available to assist the respective salvage and stranding network as needed.

All sea turtle species and their life stages are vulnerable to the harmful effects of oil through direct contact or by fouling of their food. Exposure to oil can be fatal, particularly to juveniles and hatchlings. However, it is unlikely that an accidental oil spill would occur from the proposed activities (refer to **Item 5**, Water Quality). Oil spill response activities may increase vessel traffic in the area, which could add to the possibility of collisions with sea turtles. The activities proposed in this plan will be covered by Byron's Regional Oil Spill Response Plan (refer to information submitted in accordance with **Section 8**).

There are no other IPFs (including physical disturbances to the seafloor) from the proposed activities which could impact sea turtles.

9. Air Quality

The projected air emissions identified in **Section 7** are not expected to affect the OCS air quality primarily due to distance to the shore or to any Prevention of Significant Deterioration Class I air quality area such as the Breton Wilderness Area. South Marsh Island Block 58 is beyond the 200 kilometer (124 mile) buffer for the Breton Wilderness Area and is 58 miles from the coastline. Therefore, no special mitigation, monitoring, or reporting requirements apply with respect to air emissions.

Accidents and blowouts can release hydrocarbons or chemicals, which could cause the emission of air pollutants. However, these releases would not impact onshore air quality because of the prevailing atmospheric conditions, emission height, emission rates, and the distance of South Marsh Island Block 58 from the coastline. There are no other IPFs (including effluents, physical disturbances to the seafloor, wastes sent to shore for treatment or disposal) from the proposed activities which could impact air quality.

10. Shipwreck Sites (known or potential)

IPFs that could impact known or unknown shipwreck sites as a result of the proposed operations in South Marsh Island Block 58 include disturbances to the seafloor and accidents (oil spill). South Marsh Island Block 58 is not located in or adjacent to an OCS block designated by BOEM as having a high probability for occurrence of shipwrecks. Byron will report to BOEM the discovery of any evidence of a shipwreck and make every reasonable effort to preserve and protect that cultural resource. There are no other IPFs (including emissions, effluents, wastes sent to shore for treatment or disposal, or accidents) from the proposed activities which could impact shipwreck sites.

Accidents: An accidental oil spill has the potential to cause some detrimental effects to shipwreck sites if the release were to occur subsea. However, it is unlikely that an accidental oil spill would occur from the proposed activities (refer to **Item 5**, Water Quality). The activities proposed in this plan will be covered by Byron's Regional Oil Spill Response Plan (refer to information submitted in accordance with **Section 8**).

There are no other IPFs (including emissions, effluents, or wastes sent to shore for treatment or disposal) from the proposed activities that could cause impacts to shipwreck sites.

11. Prehistoric Archaeological Sites

IPFs that could cause impacts to prehistoric archaeological sites as a result of the proposed operations in South Marsh Island Block 58 are physical disturbances to the seafloor and accidents (oil spills).

Physical Disturbances to the seafloor: South Marsh Island Block 58 is located inside the Archaeological Prehistoric high probability lines. Byron will report to BOEM the discovery of

any object of prehistoric archaeological significance and make every reasonable effort to preserve and protect that cultural resource.

Accidents: An accidental oil spill has the potential to cause some detrimental effects to prehistoric archaeological sites if the release were to occur subsea. However, it is unlikely that an accidental oil spill would occur from the proposed activities (refer to Item 5, Water Quality). The activities proposed in this plan will be covered by Byron's Regional Oil Spill Response Plan (refer to information submitted in accordance with Section 8).

There are no other IPFs (including emissions, effluents, wastes sent to shore for treatment or disposal) from the proposed activities that could cause impacts to prehistoric archaeological sites.

Vicinity of Offshore Location

1. Essential Fish Habitat (EFH)

IPFs that could cause impacts to EFH as a result of the proposed operations in South Marsh Island Block 58 include physical disturbances to the seafloor, effluents and accidents. EFH includes all estuarine and marine waters and substrates in the Gulf of Mexico.

Physical disturbances to the seafloor: The Live Bottom Low Relief Stipulation, the Live Bottom (Pinnacle Trend) Stipulation, and the Eastern Gulf Pinnacle Trend Stipulation would prevent most of the potential impacts on live-bottom communities and EFH from bottom disturbing activities (e.g., anchoring, structure emplacement and removal).

Effluents: The Live Bottom Low Relief Stipulation, the Live Bottom (Pinnacle Trend) Stipulation, and the Eastern Gulf Pinnacle Trend Stipulation would prevent most of the potential impacts on live-bottom communities and EFH from operational waste discharges. Levels of contaminants in drilling muds and cuttings and produced-water discharges, discharge-rate restrictions, and monitoring and toxicity testing are regulated by the EPA NPDES permit, thereby eliminating many significant biological or ecological effects. Operational discharges are not expected to cause significant adverse impacts to EFH.

Accidents: An accidental oil spill has the potential to cause some detrimental effects on EFH. Oil spills that contact coastal bays and estuaries, as well as OCS waters when pelagic eggs and larvae are present, have the greatest potential to affect fisheries. However, it is unlikely that an oil spill would occur from the proposed activities (refer to **Item 5**, Water Quality). The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in **Section 8**).

There are no other IPFs (including emissions, or wastes sent to shore for treatment or disposal) from the proposed activities which could impact essential fish habitat.

2. Marine and Pelagic Birds

IPFs that could impact marine birds as a result of the proposed activities include air emissions, accidental oil spills, and discarded trash and debris from vessels and the facilities.

Emissions: Emissions of pollutants into the atmosphere from these activities are far below concentrations which could harm coastal and marine birds.

Accidents: An oil spill would cause localized, low-level petroleum hydrocarbon contamination. However, it is unlikely that an oil spill would occur from the proposed activities (refer to Item 5, Water Quality). Marine and pelagic birds feeding at the spill location may experience chronic, nonfatal, physiological stress. It is expected that few, if any, coastal and marine birds would actually be affected to that extent. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

Discarded trash and debris: Marine and pelagic birds could become entangled and snared in discarded trash and debris, or ingest small plastic debris, which can cause permanent injuries and death. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass. Informational placards will be posted on all vessels and facilities having sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (previously "All Washed Up: The Beach Litter Problem"). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE. Debris, if any, from these proposed activities will seldom interact with marine and pelagic birds; therefore, the effects will be negligible.

There are no other IPFs (including effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities which could impact marine and pelagic birds.

3. Public Health and Safety Due to Accidents.

There are no IPFs (emissions, effluents, physical disturbances to the seafloor, wastes sent to shore for treatment or disposal or accidents, including an accidental H2S releases) from the proposed activities which could cause impacts to public health and safety. In accordance with NTL No.'s 2008-G04, 2009-G27, and 2009-G31, sufficient information is included in Section 4 to justify our request that our proposed activities be classified by BSEE as H_2S absent.

Coastal and Onshore

1. Beaches

IPFs from the proposed activities that could cause impacts to beaches include accidents (oil spills) and discarded trash and debris.

Accidents: Oil spills contacting beaches would have impacts on the use of recreational beaches and associated resources. Due to the distance from shore (58 miles) and the response capabilities that would be implemented, no significant adverse impacts are expected. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in **Section 8**).

Discarded trash and debris: Trash on the beach is recognized as a major threat to the enjoyment and use of beaches. There will only be a limited amount of marine debris, if any, resulting from the proposed activities. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on all vessels and facilities having sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

There are no other IPFs (emissions, effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities which could impact beaches.

2. Wetlands

IPFs from the proposed activities that could cause impacts to wetlands include accidents (oil spills) and discarded trash and debris.

Accidents: It is unlikely that an oil spill would occur from the proposed activities (refer to Item 5, Water Quality). Due to the distance from shore (58 miles) and the response capabilities that would be implemented, no impacts are expected. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

Discarded trash and debris: There will only be a limited amount of marine debris, if any, resulting from the proposed activities. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on all vessels and facilities having sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

There are no other IPFs (emissions, effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities which could impact wetlands.

3. Shore Birds and Coastal Nesting Birds

Accidents: Oil spills could cause impacts to shore birds and coastal nesting birds. However, it is unlikely that an oil spill would occur from the proposed activities (refer to **Item 5**, Water Quality). Given the distance from shore (58 miles) and the response capabilities that would be

implemented, no impacts are expected. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in **Section 8**).

Discarded trash and debris: Coastal and marine birds are highly susceptible to entanglement in floating, submerged, and beached marine debris: specifically plastics. Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V and the Marine Plastic Pollution Research and Control Act, and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on vessels and every facility that has sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

There are no other IPFs (emissions, effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities that could cause impacts to shore birds and coastal nesting birds.

4. Coastal Wildlife Refuges

Accidents: An accidental oil spill from the proposed activities could cause impacts to coastal wildlife refuges. However, it is unlikely that an oil spill would occur from the proposed activities (refer to Item 5, Water Quality). Due to the distance from shore (58 miles) and the response capabilities that would be implemented, no impacts are expected. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

Discarded trash and debris: Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V, the Marine Plastic Pollution Research and Control Act and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when

handling and disposing of small items and packaging materials, particularly those made of nonbiodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on vessels and every facility that has sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

There are no other IPFs (emissions, effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities that could cause impacts to coastal wildlife refuges.

5. Wilderness Areas

Accidents: An accidental oil spill from the proposed activities could cause impacts to wilderness areas. However, it is unlikely that an oil spill would occur from the proposed activities (refer to Item 5, Water Quality). Due to the distance from the nearest designated Wilderness Area (182 miles) and the response capabilities that would be implemented, no significant adverse impacts are expected. The activities proposed in this plan will be covered by Byron's Regional OSRP (refer to information submitted in Section 8).

Discarded trash and debris: Operators are prohibited from deliberately discharging debris as mandated by MARPOL-Annex V, the Marine Plastic Pollution Research and Control Act and regulations imposed by various agencies including the United States Coast Guard (USCG) and the Environmental Protection Agency (EPA). Byron will operate in accordance with the regulations and also avoid accidental loss of solid waste items by maintaining waste management plans, manifesting trash sent to shore, and using special precautions such as covering outside trash bins to prevent accidental loss of solid waste. Special caution will be exercised when handling and disposing of small items and packaging materials, particularly those made of non-biodegradable, environmentally persistent materials such as plastic or glass.

Informational placards will be posted on vessels and every facility that has sleeping or food preparation capabilities. All offshore personnel, including contractors and other support services-related personnel (e.g. helicopter pilots, vessel captains and boat crews) will be indoctrinated on waste procedures, and will view the video (or Microsoft PowerPoint presentation), "Think About It" (*previously "All Washed Up: The Beach Litter Problem"*). Thereafter, all personnel will view the marine trash and debris training video annually. Offshore personnel will also receive an explanation from Byron management or the designated lease operator management that emphasizes their commitment to waste management in accordance with NTL No. 2015-G03-BSEE.

There are no other IPFs (emissions, effluents, physical disturbances to the seafloor, or wastes sent to shore for treatment or disposal) from the proposed activities that could cause impacts to wilderness areas.

6. Other Environmental Resources Identified

There are no other environmental resources identified for this impact assessment.

(C) IMPACTS ON PROPOSED ACTIVITIES

The site-specific environmental conditions have been taken into account for the proposed activities. No impacts are expected on the proposed activities from site-specific environmental conditions.

(D) ENVIRONMENTAL HAZARDS

During the hurricane season, June through November, the Gulf of Mexico is impacted by an average of ten tropical storms (39-73 mph winds), of which six become hurricanes (> 74 mph winds). Due to its location in the gulf, South Marsh Island Block 58 may experience hurricane and tropical storm force winds, and related sea currents. These factors can adversely impact the integrity of the operations covered by this plan. A significant storm may present physical hazards to operators and vessels, damage exploration or production equipment, or result in the release of hazardous materials (including hydrocarbons). Additionally, the displacement of equipment may disrupt the local benthic habitat and pose a threat to local species.

The following preventative measures included in this plan may be implemented to mitigate these impacts:

- 1. Drilling & completion
 - a. Secure well
 - b. Secure rig / platform
 - c. Evacuate personnel

Drilling activities will be conducted in accordance with NTL No.'s 2008-G09, 2009-G10, and 2010-N10.

 Structure Installation Operator will not conduct structure installation operations during Tropical Storm or Hurricane threat.

(E) ALTERNATIVES

No alternatives to the proposed activities were considered to reduce environmental impacts.

(F) MITIGATION MEASURES

No mitigation measures other than those required by regulation will be employed to avoid, diminish, or eliminate potential impacts on environmental resources.

(G) CONSULTATION

No agencies or persons were consulted regarding potential impacts associated with the proposed activities. Therefore, a list of such entities has not been provided.

(H) PREPARER(S)

Matt Harlan J. Connor Consulting, Inc. 19219 Katy Freeway, Suite 200 Houston, Texas 77094 281-578-3388 matt.harlan@jccteam.com

(I) REFERENCES

Authors:

- American Petroleum Institute (API). 1989. Effects of offshore petroleum operations on cold water marine mammals: a literature review. Washington, DC: American Petroleum Institute. 385 pp.
- Balazs, G.H. 1985. Impact of ocean debris on marine turtles: entanglement and ingestion. In: Shomura, R.S. and H.O. Yoshida, eds. Proceedings, Workshop on the Fate and Impact of Marine Debris, 26-29 November 1984, Honolulu, HI. U.S. Dept. of Commerce. NOAA Tech. Memo. NOAA-TM-NMFS-SWFC-54. Pp 387-429.
- Burke, C.J. and J.A. Veil. 1995. Potential benefits from regulatory consideration of synthetic drilling muds. Environmental Assessment Division, Argonne National Laboratory, ANL/EAD/TM-43.
- Daly, J.M. 1997. Controlling the discharge of synthetic-based drilling fluid contaminated cuttings in waters of the United States. U.S. Environmental Protection Agency, Office of Water. Work Plan, June 24, 1997.
- Hansen, D.J. 1981. The relative sensitivity of seabird populations in Alaska to oil pollution. U.S. Dept. of the Interior, Bureau of Land Management, Alaska OCS Region, Anchorage. BLM-YK-ES-81-006-1792.
- Laist, D.W. 1997. Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In: Coe,

J.M. and D.B. Rogers, eds. Marine debris: sources, impacts, and solutions. New York, NY: Springer-Verlag. Pp. 99-139.

Majors, A.P. and A.C. Myrick, Jr. 1990. Effects of noise on animals: implications for dolphins exposed to seal bombs in the eastern tropical Pacific purse-seine fishery-an annotated bibliography. NOAA Administrative Report LJ-90-06.

Marine Mammal Commission. 1999. Annual report to Congress – 1998.

- Piatt, J.F., C.J. Lensink, W. Butler, M. Kendziorek, and D.R. Nysewander. 1990. Immediate impact of the Exxon Valdez oil spill on marine birds. The Auk. 107 (2): 387-397.
- Vauk, G., E. Hartwig, B. Reineking, and E. Vauk-Hentzelt. 1989. Losses of seabirds by oil pollution at the German North Sea coast. Topics in Marine Biology. Ros, J.D, ed. Scient. Mar. 53 (2-3): 749-754.
- Vermeer, K. and R. Vermeer, 1975 Oil threat to birds on the Canadian west coast. The Canadian Field-Naturalist. 89:278-298.

Although not cited, the following were utilized in preparing this EIA:

- Hazard Surveys
- BOEM EIS's:
 - o GOM Deepwater Operations and Activities. Environmental Assessment. MMS 2000-001
 - GOM Central and Western Planning Areas Sales 166 and 168 Final Environmental Impact Statement. MMS 96-0058.

SECTION 16 ADMINISTRATIVE INFORMATION

16.1 EXEMPTED INFORMATION DESCRIPTION

The proposed bottomhole locations of the planned wells have been removed from the Public Information copy of this EP as well as any discussions of the target objectives, geologic or geophysical data, and any interpreted geology.

16.2 BIBLIOGRAPHY

N/A