UNITED STATES MEMORANDUM	GOVERNM	GOVERNMENT October 25, 2021							
To:	Publi	Public Information							
From:	Plan	Plan Coordinator, OLP, Plans Section (GM 235D)							
Subject: Control # Type	Publi - -	c Information copy of plan R-07137 Revised Development Operations Coordir	nations Docume	ent					
Lease(s)	-	OCS-G 22812 Block - 270 Main Pass Area	ł						
Operator	-	Walter Oil & Gas Corporation.							
Description	_	Change the operator of wells B001 and provide air emissions for future well workovers, recompletions, sidetracks, abandonment activities in Main Pass 27	<pre>maintenance, interventions</pre>	s and					
Rig Type	_ Not	Found							

Attached is a copy of the subject plan.

It has been deemed submitted and is under review for approval.

Henry Emembolu Plan Coordinator

REVISED DEVELOPMENT OPERATIONS COORDINATION DOCUMENT

WALTER OIL & GAS CORPORATION

Main Pass Block 270 OCS-G 22812

Estimated Startup Date: October 1, 2021

SUBMITTED BY:

Walter Oil & Gas Corporation 1100 Louisiana Suite 200 Houston, TX 77002

Paul Rodriguez (713) 659-1221 prodriguez@walteroil.com

AUTHORIZED REPRESENTATIVE:

Dena Rodriguez J. Connor Consulting, Inc. 19219 Katy Freeway, Suite 200 Houston, Texas 77094 (281) 698-8521 dena.rodriguez@jccteam.com

TABLE OF CONTENTS

SECTION 1 PLAN CONTENTS	1
1.1 PLAN INFORMATION	1
SECTION 2 GENERAL INFORMATION	2
2.1 NEW OR UNUSUAL TECHNOLOGY	2
2.2 BONDING STATEMENT	2
2.3 OIL SPILL FINANCIAL RESPONSIBILITY (OSFR)	2
2.4 BLOWOUT SCENARIO AND WORST CASE DISCHARGE CALCULATIONS	2
SECTION 6 BIOLOGICAL, PHYSICAL AND SOCIOECONOMIC INFORMATION	3
6.1 THREATENED AND ENDANGERED SPECIES, CRITICAL HABITAT AND MARINE MAMMAL INFORMATION	3
SECTION 8 AIR EMISSIONS INFORMATION	5
8.1 EMISSIONS WORKSHEETS AND SCREENING QUESTIONS	5
8.2 SUMMARY INFORMATION	5
SECTION 9 OIL SPILL INFORMATION	6
9.1 OIL SPILL RESPONSE PLANNING	6
9.2 SPILL RESPONSE SITES	6
9.3 OSRO INFORMATION	6
9.4 WORST-CASE DISCHARGE SCENARIO DETERMINATION	6
9.5 OIL SPILL RESPONSE DISCUSSION	7
SECTION 10 ENVIRONMENTAL MONITORING INFORMATION	8
10.1 MONITORING SYSTEMS	8
10.2 INCIDENTAL TAKES	8
SECTION 12 ENVIRONMENTAL MITIGATION MEASURES INFORMATION	9
12.1 MEASURES TAKEN TO AVOID, MINIMIZE, AND MITIGATE IMPACTS	9
12.2 INCIDENTAL TAKES	9
SECTION 15 ONSHORE SUPPORT FACILITIES INFORMATION	10
15.1 GENERAL	10

SECTION ATTACHMENTS

Section 1	Plan Contents
1-A	OCS Plan Information Form
Section 8	Air Emissions Information
8-A	Emissions Worksheets
Section 9	Oil Spill Information
9-A	Oil Spill Response Discussion

SECTION 1 PLAN CONTENTS

1.1 PLAN INFORMATION

Lease OCS-G 22812, Main Pass Block 270 was issued July 1, 2001. Lease OCS-G 33690, Main Pass Block 273 was issued July 1, 2010. Numerous wells were drilled. The B platform was installed on November 2, 2017. The lease is held by production.

Leases OCS-G 22812 and 33690 are in the Main Pass 270 Unit Contract No. 754315010, which was approved effective November 21, 2020.

Walter Oil & Gas Corporation (Walter) acquired the Main Pass 270 Field from Castex Offshore, Inc. in the summer of 2021. Walter was designated operator of Lease OCS-G 22812 effective July 22, 2021 and Lease OCS-G 33690 effective July 23, 2021

Under this Revised DOCD, Walter proposes to change the operator of the following wells and provide air emissions for future well maintenance, workovers, recompletions, sidetracks, interventions and abandonment activities:

- B001 (17-724-40976-01) This well is currently producing.
- B002 (17-724-40978-01)

These development operations are in approximately 205-210 feet of water. The operations proposed will not utilize pile-driving, nor is Walter proposing any new pipelines expected to make landfall.

The OCS Plan Information Form BOEM-137 is included as Attachment 1-A.

ATTACHMENT 1-A

U.S. Department of the Interior Bureau of Ocean Energy Management

OCS PLAN INFORMATION FORM

	General Information										
Type of OCS Plan: Expl	oration Plan (EP)) X	Developmen	nt Operation	ns Coordi	nation E	Document (DO	CD)			
Company Name: Walter Oil & Gas Cor	poration			BOEM	Operator 1	Number:	00730				
Address: 1100 Louisiana, Ste 200				Contact Person: Dena Rodriguez							
Houston, TX 77002-5299				Phone Number: 281-698-8512							
				E-Mail A	Address: o	lena.rod	riguez@jcctea	m.com			
If a service fee is required under 30 CFI	R 550.125(a), pro	vide the	Amount p	oaid N/A	4	Rece	eipt No.		N/A		
	Project a	and Wor	st Case Dis	scharge	(WCI)) Info	ormation				
Lease: OCS-G 22812	Area: Main F	ass		Block: 2	.70			Proje	ect Name	e (If App	plicable):
Objective(s) X Oil X Gas	Sulphu	r Sal	lt Onshore S	Support Ba	ses: Gold	len Mea	dow, Cameron	n, Gallian	no, LA		
Platform / Well Name: B001		Total Volun	ne of WCD: 1,	000 bbls			API Gravity	r: 45.4°			
Distance to Closest Land (Miles): 29				Volume f	from unco	ontrolled	blowout: 600) bbls			
Have you previously provided informat	on to verify the c	alculations a	and assumption	s for your V	WCD?				Yes	Х	No
If so, provide the Control Number of the	EP or DOCD w	ith which thi	is information v	was provide	ed						
Do you propose to use new or unusual t	echnology to con-	duct your ac	ctivities?						Yes	Х	No
Do you propose to use a vessel with and	hors to install or	modify a str	ucture?						Yes	Х	No
Do you propose any facility that will see	ve as a host facil	ity for deepw	water subsea de	velopment	?				Yes	Х	No
Descripti	on of Propo	sed Activ	vities and '	Fentativ	ve Scho	edule	(Mark all	that a	apply))	-
Proposed Activ	ity		Start	Date		F	End Date			No. o	f Days
Future Well Intervention and Abandonn Nos. B001, B002	nent Activities - V	Well	01/01		12	2/31/2032			150 da	ays/year	
1105. 2001, 2002											
Description	of Drilling F	Rig				D	escription	of St	ructu	re	
Jackup	Drillshi	р			Caisson	n			Tensio	n leg pla	tform
Gorilla Jackup	Platform	n rig		Х	Fixed p	latform			Compli	iant tow	er
Semisubmersible	Submer	sible			Spar				Guyed	tower	
DP Semisubmersible	Other (A	Attach descr	ription)		Floatin	g produc	ction		0:1	A.4. 1	lessinti N
Drilling Rig Name (If known): N/A				1	system	~ .			Other (Attach c	lescription)
		Descrip	otion of Lea	ase Teri	m Pipe	lines	·	÷			
From (Facility/Area/Block)	To (Fa	cility/Area/l	Block)		Diamete	er (Inch	es)		Ι	ength (Feet)
N/A	N/A			N/A				N/A			

OCS PLAN INFORMATION FORM (CONTINUED) Include one copy of this page for each proposed well/structure

	Proposed Well/Structure Location														
Well or Structure					l or	Previo	ously reviewed u	inder an approved EP	or DOCD?	X	Yes		No		
structure, referen Is this an existing structure?	-	is name		es	No		is an existing w	rell or structure, list the		ID 2644					
Do you plan to use a subsea BOP or a surface BOP on a float							ng facility to conduct your proposed activities?				Yes	х	No		
WCD Info	For well blowout					or structur Bbls): 400		l storage and pipelines	API Gra	API Gravity of fluid 45.4°					
	Surface Location						m-Hole Locatio	on (For Wells)	Comple separate		r multiple	e complet	ions, enter		
Lease No.	OCS-G2	22812				OCS			OCS OCS						
Area Name	Main Pa	S S													
Block No.	270														
Blockline Departures	N/S Departure: 700' FSL						eparture:		N/S Dep	N/S Departure F L N/S Departure F L N/S Departure F L					
(in feet)	E/W Departure: 4,195' FWL					E/W I	Departure:		E/W Dep	E/W Departure $F _ L$ E/W Departure $F _ L$ E/W Departure $F _ L$					
Lambert X-Y coordinates	X: 2,890	0,295				X:			X: X: X:	X: X:					
coordinates	Y: 249,2	280				Y:			Y: Y: Y:	Y:					
Latitude/ Longitude	Latitude	: 29° 1	9' 20.32	268" N		Latitu	de:	Latitude	Latitude Latitude Latitude						
Longitude	Longitud	le: -88	° 32' 21	.9768"	W	Longi	tude:	Longitud	Longitude Longitude Longitude						
Water Depth (Fe	et): 210'					MD (I	Feet):	TVD (Feet):	MD (Fee MD (Fee				(Feet): (Feet):		
Anchor Radius (i	if applicab	le) in fo	eet: N/A	ł					MD (Fee				(Feet):		
	1				_	-		n Barge (If anchor							
Anchor Name	or No.	A	rea	Bl	ock		Coordinate	Y:	inate	Len	gth of An	chor Cha	in on Seafloor		
						X: X:		Y: Y:							
								Y:							
							X: Y:								
						X:									
						X:									
						X:									
						X:	X: Y:								

OCS PLAN INFORMATION FORM (CONTINUED) Include one copy of this page for each proposed well/structure

								- ×	ructure Loc								
Well or Structure structure, referen					ng well	or	Previo	ously reviewed u	nder an approved	l EP or D	OCD?	Х	Yes		No		
Is this an existing structure?	-		X		es	No	If this or AP		ell or structure, li	st the Co	mplex ID	D 17-724-40976-01					
Do you plan to use a subsea BOP or a surface BOP on a float							ating facil	ng facility to conduct your proposed activities?					Yes	х	No		
WCD Info							or structur Bbls): 400	es, volume of all	API Gravity of fluid 45.4°								
	Surface Location						Botto	m-Hole Locatio	n (For Wells)		Complete separate		multiple	e complet	ions, enter		
Lease No.	OCS-G 22812						OCS-0	G 22812			OCS OCS						
Area Name	Main Pa	ISS					Main	Pass									
Block No.	270						270										
Blockline Departures	N/S Departure: 700' FSL						N/S D	eparture:			N/S Departure F L N/S Departure F L N/S Departure F L						
(in feet)	E/W Departure: 4,195' FWL						E/W I	E/W Departure:				E/W Departure F L E/W Departure F L E/W Departure F L					
Lambert X-Y coordinates	X: 2,890	0,29	5				X:		X: X: X: X:								
coordinates	Y: 249,2	280					Y:	Y:				Y: Y: Y:					
Latitude/	Latitude	: 29	° 19' 2	20.326	58" N		Latitu	Latitude:				Latitude Latitude Latitude					
Longitude	Longitud	de:	-88° 32	2' 21.9	9768" V	I	Longi	Longitude:				Longitude Longitude Longitude					
Water Depth (Fe	et): 210'						MD (I	Feet):	TVD (Feet)):	MD (Fee MD (Fee	t): t):			(Feet): (Feet):		
Anchor Radius (i											MD (Fee	t):		TVD	(Feet):		
Anchor Name		or I	Locat Area	1	for Dr Blo	-	-	Construction Coordinate	Barge (If an	<mark>chor rad</mark> oordinate					in on Seafloor		
Anchor Ivanie	01 110.		Alta		DIO		X:	Coordinate	Y:	oorumate		Leng	gui of An		in on Seanoor		
					X:		Y:										
					X:												
					X:	X: Y:											
							X:	X: Y:									
							X:										
							X:										
							X:	X: Y:									

OCS PLAN INFORMATION FORM (CONTINUED) Include one copy of this page for each proposed well/structure

	Proposed Well/Structure Location															
Well or Structure structure, referen						or	Prev	iously reviewed un	der an approved EP	or DOCD?	X	Yes		No		
Is this an existing structure?	-		x			No		s is an existing we PI No.	ll or structure, list th	e Complex ID	17-724-40978-01					
Do you plan to use a subsea BOP or a surface BOP on a float							pating fac	ng facility to conduct your proposed activities?				Yes	X	No		
WCD Info							For structu Bbls): 40		storage and pipeline	⁸ API Gra	API Gravity of fluid 45.4°					
	Surface Location						Bott	om-Hole Location	(For Wells)	Comple separate		r multipl	e complet	ions, enter		
Lease No.	OCS-G 22812						OCS	-G 33690		OCS OCS						
Area Name	Main Pa	ISS					Mair	n Pass								
Block No.	270						273									
Blockline Departures	N/S Departure: 706' FSL						N/S	Departure:		N/S Dep	N/S Departure F L N/S Departure F L N/S Departure F L N/S Departure F L					
(in feet)	E/W Departure: 4,200' FWL						E/W	Departure:	E/W De	E/W Departure F L E/W Departure F L E/W Departure F L						
Lambert X-Y coordinates	X: 2,89	0,300)				X:			X: X: X:	X:					
coordinates	Y: 249,	286					Y:		Y: Y: Y:	Y:						
Latitude/	Latitude	: 29	° 19' 1	20.383	38" N		Latit	ude:	Latitude	Latitude Latitude Latitude						
Longitude	Longitud	de: -	88° 3	2' 21.9	9222" \	N	Long	zitude:	Longitu	Longitude Longitude Longitude						
Water Depth (Fe	et): 205'						MD	(Feet):	TVD (Feet):	MD (Fe MD (Fe				(Feet): (Feet):		
Anchor Radius (i										MD (Fe	et):		TVD	(Feet):		
American		1		T		-	-		Barge (If anchor							
Anchor Name	or No.		Area	L	Blo	CK	X:	K Coordinate	Y Coord Y:	inate	Leng	gin of Ar	icnor Cha	in on Seafloor		
					X:		Y:									
							X:		Y:							
						X:										
							X:	K: Y:								
							X:	X: Y:								
							X:									
							X:									

SECTION 2 GENERAL INFORMATION

2.1 NEW OR UNUSUAL TECHNOLOGY

No new or unusual technology is proposed in this DOCD as defined by 30 CFR 550.200.

2.2 BONDING STATEMENT

The bond requirements for the activities and facilities proposed in this DOCD are satisfied by an area-wide bond, furnished and maintained according to 30 CFR 556.900 (a) and 30 CFR 556.901 (a) and (b) and NTL No. 2015-BOEM-N04, "General Financial Assurance"; and additional security under 30 CFR 556.901(d) – (f) and NTL No. 2016—BOEM-N01, "Requiring Additional Security" as required by BOEM.

2.3 OIL SPILL FINANCIAL RESPONSIBILITY (OSFR)

Walter Oil & Gas Corporation (Company No. 00730) has demonstrated oil spill financial responsibility for the facilities proposed in this DOCD according to 30 CFR Part 553.15 (a); and NTL No. 2008-N05, "Guidelines for Oil Spill Financial Responsibility for Covered Facilities".

2.4 BLOWOUT SCENARIO AND WORST CASE DISCHARGE CALCULATIONS

No drilling operations are proposed in this DOCD.

SECTION 6 BIOLOGICAL, PHYSICAL AND SOCIOECONOMIC INFORMATION

6.1 THREATENED AND ENDANGERED SPECIES, CRITICAL HABITAT AND MARINE MAMMAL INFORMATION

The federally listed endangered and threatened species potentially occurring in the lease area and along the Gulf Coast are provided in the table below.

Species	Scientific Name	Status	Potentia	I Presence	Critical Habitat	
			Lease Area	Coastal	Designated in the Gulf of Mexico	
Marine Mammals	•					
Manatee, West Indian	Trichechus manatus Iatirostris	Т		X	Florida (peninsular)	
Whale, Blue	Balaenoptera masculus	E	X ¹		None	
Whale, Bryde's ⁴	Balaenoptera brydei/edeni	E	Х		None	
Whale, Fin	Balaenoptera physalus	E	X ¹		None	
Whale, Humpback	Megaptera novaeangliae	E	X ¹		None	
Whale, North Atlantic Right	Eubalaena glacialis	E	X ¹		None	
Whale, Rice's ⁴	Balaenoptera ricei	E	Х		None	
Whale, Sei	Balaenopiera borealis	E	X ¹		None	
Whale, Sperm	Physeter catodon (=macrocephalus)	E	Х		None	
Terrestrial Mamma	lls					
Mouse, Beach (Alabama, Choctawatchee, Perdido Key, St. Andrew)	Peromyscus polionotus	E	-	X	Alabama, Florida (panhandle) beaches	
Birds		1				
Plover, Piping	Charadrius melodus	Т	-	X	Coastal Texas, Louisiana, Mississippi, Alabama and Florida (panhandle)	
Crane, Whooping	Grus Americana	E	-	Х	Coastal Texas	
Crane, Mississippi sandhill	Grus canadensis pulla	E	-	Х	Coastal Mississippi	
Curlew, Eskimo	Numenius borealis	E	-	Х	none	
Falcon, Northern Aplomado	Falco femoralis septentrionalis	E	-	Х	none	
Knot, Red	Calidris canutus rufa	Т	-	Х	None	
Stork, Wood	Mycteria americana	Т	-	Х	None	
Reptiles		<u>.</u>				
Sea Turtle, Green	Chelonia mydas	T/E ³	Х	Х	None	
Sea Turtle, Hawksbill	Eretmochelys imbricata	E	Х	Х	None	

Species	Scientific Name	Status	Potentia	al Presence	Critical Habitat		
			Lease Area	Coastal	Designated in the Gulf of Mexico		
Sea Turtle, Kemp's Ridley	Lepidochelys kempli	E	Х	Х	None		
Sea Turtle, Leatherback	Dermochelys coriacea	E	Х	X	None		
Sea Turtle, Loggerhead	Caretta caretta	Т	Х	X	Texas, Louisiana, Mississippi, Alabama, Florida		
Fish							
Sturgeon, Gulf	Acipenser oxyrinchus (=oxyrhynchus) desotoi	Т	Х	X	Coastal Louisiana, Mississippi, Alabama and Florida (panhandle)		
Shark, Oceanic Whitetip	Carcharhinus longimanus	E	Х	_	None		
Sawfish, Smalltooth	Pristis pectinate	E	-	Х	None		
Grouper, Nassau	Epinephelus striatus	Т	-	Х	None		
Ray, Giant Manta	Manta birostris	E	Х		None		
Corals							
Coral, Elkhorn	Acopora palmate	Т	X ²	X	Florida Keys and Dry Tortugas		
Coral, Staghorn	Acopora cervicornis	Т	Х	Х	Florida		
Coral, Boulder Star	Orbicella franksi	Т	Х	Х	none		
Coral, Lobed Star	Orbicella annularis	Т	Х	Х	None		
Coral, Mountainous Star	Orbicella faveolate	Т	Х	Х	None		
Coral, Rough Cactus	Mycetophyllia ferox	Т	-	Х	None		

Abbreviations: E = Endangered; T = Threatened

1 The Blue, Fin, Humpback, North Atlantic Right, and Sei Whales are rare or extralimital in the Gulf of Mexico and are unlikely to be present in the lease area.

2 According to the 2017 EIS, Elkhorn Coral, while uncommon, has been found in the Flower Garden Banks. (BOEM 2017-009)

3 Green Sea Turtles are considered threatened throughout the Gulf of Mexico; however, the breeding population off the coast of Florida is considered endangered.

4 The Bryde's whale, also known as the Bryde's whale complex, is a collection of baleen whales that are still being researched to determine if they are the same species or if they are individual species of whales. In 2021, the Rice's whale, formerly known as the Gulf of Mexico Bryde's whale, was determined to be a separate species. There are less than 100 Rice's whales living in the Gulf of Mexico year-round. These whales retain all the protections of the Gulf of Mexico Bryde's whale under the Endangered Species Act while the regulations are being updated to reflect the name change. Other Bryde's whales are migratory and may enter the Gulf of Mexico; however, the migratory Bryde's whales are rare or extralimital in the Gulf of Mexico and are unlikely to be present in the lease area.

SECTION 8 AIR EMISSIONS INFORMATION

8.1 EMISSIONS WORKSHEETS AND SCREENING QUESTIONS

Screen Questions for DOCD's	Yes	No
Is any calculated Complex Total (CT) Emission amount (tons) associated with your proposed development activities more than 90% of the amounts calculated using the following formulas: $CT = 3400D^{2/3}$ for CO, and $CT = 33.3D$ for the other air pollutants (where D = distance to shore in miles)?		х
Do your emission calculations include any emission reduction measures or modified emission factors?		Х
Does or will the facility complex associated with your proposed development and production activities process production from eight or more wells?		Х
Do you expect to encounter H_2S at concentrations greater than 20 parts per million (ppm)?		Х
Do you propose to flare or vent natural gas for more than 48 continuous hours from any proposed well?		Х
Do you propose to burn produced hydrocarbon liquids?		Х
Are your proposed development and production activities located within 25 miles (40 kilometers) from shore?		Х
Are your proposed development and production activities located within 124 miles (200 kilometers) of the Breton Wilderness Area?	Х	

8.2 SUMMARY INFORMATION

There are no existing facilities or activities co-located with the currently proposed activities; therefore, the Complex Total Emissions are the same as the Plan Emissions and are provided in **Attachment 8-A.**

This information was calculated by: Dena Rodriguez

281-578-3388 dena.rodriguez@jccteam.com

ATTACHMENT 8-A DOCD/DPP - AIR QUALITY

COMPANY	Walter Oil & Gas Corporation
AREA	Main Pass
BLOCK	270
LEASE	OCS-G 22812
FACILITIES	В
WELLS	B001, B002
COMPANY CONTACT	Dena Rodriguez
TELEPHONE NO.	281-578-3388
REMARKS	Emissions provide for future operations on B001, B002 including contingency drilling days each year for future well maintenance, workovers, recompletions, sidetracks, interventions and abandonment activities utilizing a lift boat

LEASE TER	M PIPELINE CO	NSTRUCTION INFORMATION:
YEAR	NUMBER OF PIPELINES	TOTAL NUMBER OF CONSTRUCTION DAYS
2022	N/A	N/A
2023		
2024		
2025		
2026		
2027		
2028		
2029		
2030		
2031		

AIR EMISSIONS COMPUTATION FACTORS

Fuel Usage Conversion Factors	Natural Ga	s Turbines			Natural G	as Engines	Diesel Re	cip. Engine	Diesel *	Turbines			
	SCF/hp-hr	9.524			SCF/hp-hr	7.143	GAL/hp-hr	0.0514	GAL/hp-hr	0.0514]
Equipment/Emission Factors	units	TSP	PM10	PM2.5	SOx	NOx	VOC	Pb	CO	NH3	REF.	DATE	Reference Links
Natural Gas Turbine	g/hp-hr		0.0086	0.0086	0.0026	1.4515	0.0095	N/A	0.3719	N/A	AP42 3.1-1& 3.1-2a	4/00	https://www3.epa.gov/ttnchie1/ap42/ch03/final/c03s01.pdf
RECIP. 2 Cycle Lean Natural Gas	g/hp-hr		0.1293	0.1293	0.0026	6.5998	0.4082	N/A N/A	1.2009	N/A N/A	AP42 3.1-16 3.1-28 AP42 3.2-1	4/00	https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf
RECIP. 4 Cycle Lean Natural Gas	g/hp-hr		0.0002	0.0002	0.0020	2.8814	0.4032	N/A	1.8949	N/A	AP42 3.2-1 AP42 3.2-2	7/00	https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf
RECIP. 4 Cycle Lean Natural Gas	g/hp-hr		0.0002	0.0323	0.0020	7.7224	0.4014	N/A N/A	11.9408	N/A N/A	AP42 3.2-2 AP42 3.2-3	7/00	https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf
Diesel Recip. < 600 hp	g/hp-hr	1	4	0.0020	0.0279	14.1	1.04	N/A	3.03	N/A	AP42.3.3-1	10/96	https://www3.epa.gov/ttnchie1/ap42/ch03/final/c03s03.pdf
Diesel Recip. < 600 hp	g/hp-hr	0.32	0.182	0.178	0.0279	14.1	0.29	N/A N/A	2.5	N/A N/A	AP42 3.3-1 AP42 3.4-2	10/96	https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf
Diesel Recip. > 600 hp Diesel Boiler	g/np-ni lbs/bbl	0.0840	0.0420	0.0105	0.0055	1.0080	0.29	5.14E-05	0.2100	0.0336	AP42 3.4-1 & 3.4-2 AP42 1.3-6; Pb and NH3: WebFIRE (08/2018)	9/98 and 5/10	парэличино.срадочланонно парчалено плинансо тэро.ран
						2.7941	0.0084		0.2100		AP42 1.3-6; PD and NH3: WebFIRE (08/2018) AP42 3.1-1 & 3.1-2a	9/98 and 5/10 4/00	https://cfpub.epa.gov/webfire/ https://www3.epa.gov/ttpchie1/ap42/ch03/final/c03s01.pdf
Diesel Turbine Dual Fuel Turbine	g/hp-hr g/hp-hr	0.0381	0.0137 0.0137	0.0137 0.0137	0.0048	2.7941	0.0013	4.45E-05 4.45E-05	0.0105	N/A 0.0000	AP42 3.1-1 & 3.1-2a AP42 3.1-1& 3.1-2a: AP42 3.1-1 & 3.1-2a	4/00	https://www3.epa.gov/ttnchie1/ap42/ch03/tinal/c03s01.pdf https://cfpub.epa.gov/webfire/
													https://ctpub.epa.gov/webtire/
Vessels – Propulsion	g/hp-hr	0.320	0.1931	0.1873	0.0047	7.6669	0.2204	2.24E-05	1.2025	0.0022	USEPA 2017 NEI;TSP refer to Diesel Recip. > 600 hp reference	3/19	
Vessels – Drilling Prime Engine, Auxiliary	g/hp-hr	0.320	0.1931	0.1873	0.0047	7.6669	0.2204	2.24E-05	1.2025	0.0022	USEPA 2017 NEI;TSP refer to Diesel Recip. > 600 hp reference	3/19	https://www.epa.gov/air-emissions-inventories/2017-national-emissions-
Vessels – Diesel Boiler	g/hp-hr	0.0466	0.1491	0.1417	0.4400	1.4914	0.0820	3.73E-05	0.1491	0.0003	USEPA 2017 NEI;TSP (units converted) refer to Diesel Boiler Reference	3/19	inventory-nei-data
Vessels – Well Stimulation	g/hp-hr	0.320	0.1931	0.1873	0.0047	7.6669	0.2204	2.24E-05	1.2025	0.0022	USEPA 2017 NEI;TSP refer to Diesel Recip. > 600 hp reference	3/19	
Natural Gas Heater/Boiler/Burner	lbs/MMscf	7.60	1.90	1.90	0.60	190.00	5.50	5.00E-04	84.00	3.2	AP42 1.4-1 & 1.4-2; Pb and NH3: WebFIRE (08/2018)	7/98 and 8/18	https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s04.pdf
Combustion Flare (no smoke)	lbs/MMscf	0.00	0.00	0.00	0.57	71.40	35.93	N/A	325.5	N/A	AP42 13.5-1, 13.5-2	2/18	hites//deub ass se/bishive/
Combustion Flare (light smoke)	lbs/MMscf	2.10	2.10	2.10	0.57	71.40	35.93	N/A	325.5	N/A	AP42 13.5-1, 13.5-2	2/18	https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_02-05-18.pdf
Combustion Flare (medium smoke)	lbs/MMscf	10.50	10.50	10.50	0.57	71.40	35.93	N/A	325.5	N/A	AP42 13.5-1, 13.5-2	2/18	https://wwws.epa.gov/tti/chiei/ap4z/ch15/iinai/C15505_02-05-16.put
Combustion Flare (heavy smoke)	lbs/MMscf	21.00	21.00	21.00	0.57	71.40	35.93	N/A	325.5	N/A	AP42 13.5-1, 13.5-2	2/18	
Liquid Flaring	lbs/bbl	0.42	0.0966	0.0651	5.964	0.84	0.01428	5.14E-05	0.21	0.0336	AP42 1.3-1 through 1.3-3 and 1.3-5	5/10	https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s03.pdf
Storage Tank	tons/yr/tank						4.300				2014 Gulfwide Inventory; Avg emiss (upper bound of 95% CI)	2017	https://www.boem.gov/environment/environmental-studies/2014-gulfwide- emission-inventory
Fugitives	lbs/hr/component						0.0005				API Study	12/93	https://www.apiwebstore.org/publications/item.cgi?9879d38a-8bc0-4abe- bb5c-9b623870125d
Glycol Dehydrator	tons/yr/dehydrator						19.240				2011 Gulfwide Inventory: Ava emiss (upper bound of 95% CI)	2014	https://www.boem.gov/environment/environmental-studies/2011-gulfwide- emission-inventory
Cold Vent	tons/yr/vent						44.747				2014 Gulfwide Inventory; Avg emiss (upper bound of 95% CI)	2017	https://www.boem.gov/environment/environmental-studies/2014-gulfwide- emission-inventory_
Waste Incinerator	lb/ton		15.0	15.0	2.5	2.0	N/A	N/A	20.0	N/A	AP 42 2.1-12	10/96	https://www3.epa.gov/ttnchie1/ap42/ch02/final/c02s01.pdf
On-Ice – Loader	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600	2009	
On-Ice – Other Construction Equipment	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	reference USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600 reference	2009	
On-Ice – Other Survey Equipment	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600 reference	2009	1
On-Ice – Tractor	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600 reference	2009	https://www.epa.gov/moves/nonroad2008a-installation-and-updates
On-Ice – Truck (for gravel island)	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600 reference	2009]
On-Ice – Truck (for surveys)	lbs/gal	0.043	0.043	0.043	0.040	0.604	0.049	N/A	0.130	0.003	USEPA NONROAD2008 model; TSP (units converted) refer to Diesel Recip. <600 reference	2009]
Man Camp - Operation (max people/day)	tons/person/day		0.0004	0.0004	0.0004	0.006	0.001	N/A	0.001	N/A	BOEM 2014-1001	2014	https://www.boem.gov/sites/default/files/uploadedFiles/BOEM/BOEM_New sroom/Library/Publications/2014-1001.pdf
Vessels - Ice Management Diesel	g/hp-hr	0.320	0.1931	0.1873	0.0047	7.6669	0.2204	2.24E-05	1.2025	0.0022	USEPA 2017 NEI;TSP refer to Diesel Recip. > 600 hp reference	3/19	https://www.epa.gov/air-emissions-inventories/2017-national-emissions-
Vessels - Hovercraft Diesel	g/hp-hr	0.320	0.1931	0.1873	0.0047	7.6669	0.2204	2.24E-05	1.2025	0.0022	USEPA 2017 NEI;TSP refer to Diesel Recip. > 600 hp reference	3/19	inventory-nei-data

Sulfur Content Source	Value	Units
Fuel Gas	3.38	ppm
Diesel Fuel	0.0015	% weight
Produced Gas (Flare)	3.38	ppm
Produced Oil (Liquid Flaring)	1	% weight

Natural Gas Flare Parameters	Value	Units
VOC Content of Flare Gas	0.6816	Ib VOC/Ib-mol gas
Natural Gas Flare Efficiency	98	%

Density and Heat Value of Diesel								
Fuel								
Density	7.05	lbs/gal						
Heat Value	19,300	Btu/lb						
ŀ	leat Value	of Natural Ga						

Heat Value 1,050 MMBtu/MMscf

COMPANY	AREA	T	BLOCK	LEASE	FACILITY	WELL	I		Ι	r	CONTACT		PHONE		REMARKS										1
Walter Oil & Gas Corporation	Main Pass		270	OCS-G 22812	В	B001, B002					Dena Rodrigue		281-578-3388			de for future opera	ations on B001, B	002 including con	tingency drilling				s, recompletions, :	sidetracks, intervent	ntions and aband
OPERATIONS	EQUIPMENT	EQUIPMENT ID	RATING		ACT. FUEL	. RUN	ITIME				MAXIMU	IM POUNDS PE	R HOUR							ES	TIMATED TO	ONS			
	Diesel Engines		HP	GAL/HR	GAL/D																				
	Nat. Gas Engines Burners		HP MMBTU/HR	SCF/HR SCF/HR	SCF/D SCF/D	UD/D	D/YR	TSP	PM10	PM2.5	SOx	NOx	VOC	Pb	со	NH3	TSP	PM10	PM2.5	SOx	NOx	VOC	Pb	CO	NH3
DRILLING	VESSELS- Drilling - Propulsion Engine - Diesel			0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DIRIELING	VESSELS- Drilling - Propulsion Engine - Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS- Drilling - Propulsion Engine - Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS- Drilling - Propulsion Engine - Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Vessels - Diesel Boiler		0			0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Vessels – Drilling Prime Engine, Auxiliary		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPELINE	VESSELS - Pipeline Laying Vessel - Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INSTALLATION	VESSELS - Pipeline Burying - Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FACILITY OPERATIONS			5000	057.00	0470 50	24	450	2.52	0.40	2.00	0.05	04.54	0.40	0.00	40.00	0.00	0.05	2.02	0.70	0.00	450.40	4.07	0.00	00.00	0.04
			5000	257.23	6173.52	24	150	3.53	2.13	2.06	0.05	84.51	2.43	0.00	13.26	0.02	6.35	3.83	3.72	0.09	152.12	4.37	0.00	23.86	0.04
PRODUCTION	RECIP.<600hp Diesel RECIP.>600hp Diesel		0	0	0.00 0.00	0	0	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00		0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00		0.00 0.00	
	VESSELS - Shuttle Tankers		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS - Well Stimulation		0	ő	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Natural Gas Turbine		0	0	0.00	0	0		0.00	0.00	0.00	0.00	0.00		0.00			0.00	0.00	0.00	0.00	0.00		0.00	
	Diesel Turbine		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Dual Fuel Turbine		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RECIP. 2 Cycle Lean Natural Gas		0	0	0.00	0	0		0.00	0.00	0.00	0.00	0.00		0.00			0.00	0.00	0.00	0.00	0.00		0.00	
	RECIP. 4 Cycle Lean Natural Gas		0	0	0.00	0	0		0.00	0.00	0.00	0.00	0.00		0.00			0.00	0.00	0.00	0.00	0.00		0.00	
	RECIP. 4 Cycle Rich Natural Gas		0	0	0.00	0	0		0.00	0.00	0.00	0.00	0.00		0.00			0.00	0.00	0.00	0.00	0.00		0.00	
	Diesel Boiler				0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Natural Gas Heater/Boiler/Burner MISC.		BPD	0 SCF/HR	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	STORAGE TANK		вгр	3CF/HK		1	1			-			0.00									0.00			
	COMBUSTION FLARE - no smoke			0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - light smoke			ő		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - medium smoke			ő		Ő	Ő	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - heavy smoke			0		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COLD VENT				0	1	1						0.00									0.00			
	FUGITIVES				0	0	0						0.00									0.00			
	GLYCOL DEHYDRATOR				0	1	1						0.00									0.00			
	WASTE INCINERATOR		0			0	0		0.00	0.00	0.00	0.00			0.00			0.00	0.00	0.00	0.00			0.00	
DRILLING	Liquid Flaring		0			0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WELL TEST	COMBUSTION FLARE - no smoke			0		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - light smoke			0		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - medium smoke			0		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	COMBUSTION FLARE - heavy smoke			0		0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	
ALASKA-SPECIFIC SOURCES	VESSELS		kW			HR/D	D/YR																		
	VESSELS - Ice Management Diesel		0			0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
2022-2032 EXEMPTION	2 Facility Total Emissions							3.53	2.13	2.06	0.05	84.51	2.43	0.00	13.26	0.02	6.35	3.83	3.72	0.09	152.12	4.37	0.00	23.86	0.04
CALCULATION	DISTANCE FROM LAND IN MILES																965.70			965.70	965.70	965.70		32,093.04	
DRILLING	29.0 VESSELS - Crew Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SHILLING	VESSELS - Supply Diesel		6200	318,9652	7655.16	24	150	4.37	2.64	2.56	0.00	104.80	3.01	0.00	16.44	0.00	7.87	4.75	4.61	0.00	188.63	5.42	0.00	29.59	0.00
	VESSELS - Tugs Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPELINE	VESSELS - Support Diesel, Laying		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INSTALLATION	VESSELS - Support Diesel, Burying		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS - Crew Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VESSELS - Supply Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FACILITY	VESSELS - Material Tug Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INSTALLATION	VESSELS - Crew Diesel		0	0	0.00 0.00	0	0	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
PRODUCTION	VESSELS - Supply Diesel VESSELS - Support Diesel		0	0	0.00	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ALASKA-SPECIFIC			U	U U		0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOURCES	On-Ice Equipment			GAL/HR	GAL/D																				
	Man Camp - Operation (maximum people per day)		PEOPLE/DAY		· · · · · · · · · · · · · · · · · · ·			İ.		İ .															
	VESSELS		kW				D/YR																		
	On-Ice – Loader			0	0.0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	On-Ice – Other Construction Equipment			0	0.0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	On-Ice – Other Survey Equipment			0	0.0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	On-Ice – Tractor			0	0.0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	On-Ice – Truck (for gravel island)			0	0.0	0	0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	On-Ice – Truck (for surveys) Man Camp - Operation		0	U	0.0	0	0	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.00	0.00
	Man Gamp - Operation		0			0	0	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00
	VESSELS - Hovercratt Diesel		0							0.00															
2022-2032	VESSELS - Hovercraft Diesel 2 Non-Facility Total Emissions		0			0	0	4.37	2.64	0.00 2.56	0.00	104.80	3.01	0.00	16.44	0.00	7.87	4.75	4.61	0.00	188.63	0.00	0.00	29.59	0.06

AIR EMISSIONS CALCULATIONS

COMPANY		AREA	BLOCK	LEASE	FACILITY	WELL			
Walter Oil & Gas	Corporation	Main Pass	270	OCS-G 22812	В	B001, B002			
Year				Facility	y Emitted S	ubstance			
	TSP	PM10	PM2.5	SOx	NOx	voc	Pb	СО	NH3
2022-2032	6.35	3.83	3.72	0.09	152.12	4.37	0.00	23.86	0.04
Allowable	965.70			965.70	965.70	965.70		32093.04	

SECTION 9 OIL SPILL INFORMATION

9.1 OIL SPILL RESPONSE PLANNING

All the proposed activities and facilities in this DOCD will be covered by the Oil Spill Response Plan (OSRP) filed by Walter Oil & Gas Corporation (Company No. 00730) dated July 2019 and last approved on April 14, 2020 (OSRP Control No. O-370).

9.2 SPILL RESPONSE SITES

Primary Response Equipment Location	Preplanned Staging Location
Houma, LA	Houma, LA
Harvey, LA	Leeville, LA
Leeville, LA	Fourchon, LA

9.3 OSRO INFORMATION

Walter Oil & Gas Corporation's primary equipment provider is Clean Gulf Associates (CGA). Clean Gulf Associates Services, LLC (CGAS) will provide closest available personnel, as well as a CGAS supervisor to operate the equipment.

Category	Produ	ction
	Regional OSRP WCD	DOCD WCD
Type of Activity	>10 Miles Production	>10 Miles Production
Facility location (Area/Block)	EW 834	MP270
Facility designation	A	B001
Distance to nearest shoreline (miles)	62	29
Storage tanks & flowlines (bbl)	3,178	0
Lease term pipelines (bbl)	1,542	400
Uncontrolled blowout (bbl)	11,988	600
Total Volume (bbl)	16,708	1,000
Type of oil(s) (crude, condensate, diesel)	Crude	Condensate
API gravity	24.2°	45.4°

9.4 WORST-CASE DISCHARGE SCENARIO DETERMINATION

Walter has determined that the worst-case scenario from the activities proposed in this DOCD does not supersede the worst-case scenario from our approved Regional OSRP.

Since Walter Oil & Gas Corporation has the capability to respond to the worst-case spill scenario included in our Regional OSRP approved on April 14, 2020, and since the worst-case

scenario determined for our DOCD does not replace the worst-case scenario in our Regional OSRP, Walter Oil & Gas Corporation hereby certifies that Walter Oil & Gas Corporation has the capability to respond, to the maximum extent practicable, to a worst-case discharge, or a substantial threat of such a discharge, resulting from the activities proposed in this DOCD.

9.5 OIL SPILL RESPONSE DISCUSSION

The Oil Spill Response Discussion is included as Attachment 9-A.

SPILL RESPONSE DISCUSSION

For the purpose of NEPA and Coastal Zone Management Act analysis, the largest spill volume originating from the proposed activity would be a well blowout during production operations, estimated to be 1,000 barrels of condensate per day with an API gravity of 45.4°.

Land Segment and Resource Identification

Trajectories of a spill and the probability of it impacting a land segment have been projected utilizing information in the BOEM Oil Spill Risk Analysis Model (OSRAM) for the Central and Western Gulf of Mexico available on the BOEM website. The results are shown in **Figure 1**. The BOEM OSRAM identifies the highest probability of impact to the shorelines of Plaquemines Parish, Louisiana within 10 days. Plaquemines Parish includes Barataria Bay, the Mississippi River Delta, Breton Sound and the affiliated islands and bays. This region is an extremely sensitive habitat and serves as a migratory, breeding, feeding and nursery habitat for numerous species of wildlife. Beaches in this area vary in grain particle size and can be classified as fine sand, shell or perched shell beaches. Sandy and muddy tidal flats are also abundant.

<u>Response</u>

Walter will make every effort to respond to the Worst Case Discharge as effectively as practicable. A description of the response equipment under contract to contain and recover the Worst Case Discharge is shown in **Figure 2**.

Using the estimated chemical and physical characteristics of condensate, an ADIOS weathering model was run on a similar product from the ADIOS oil database. The results indicate 53% or approximately 5,300 barrels of condensate would be evaporated/dispersed within 24 hours, with approximately 4,700 barrels remaining.

Natural Weathering Data: MP 270, Well B001	Barrels of Oil
WCD Volume (24 hrs)	1,000
Less 53% natural evaporation/dispersion	5,300
Remaining volume	4,700

Figure 2 outlines equipment, personnel, materials and support vessels as well as temporary storage equipment available to respond to the worst case discharge. The volume accounts for the amount remaining after evaporation/dispersion at 24 hours. The list estimates individual times needed for procurement, load out, travel time to the site and deployment. **Figure 2** also indicates how operations will be supported.

Walter's Oil Spill Response Plan includes alternative response technologies such as dispersants and in-situ burn. Strategies will be decided by Unified Command based on an operations safety analysis, the size of the spill, weather and potential impacts. If aerial dispersants are utilized, 8

sorties (9,600 gallons) from two of the DC-3 aircrafts and 4 sorties (8,000 gallons) from the Basler aircraft would provide a daily dispersant capability of 7,540 barrels. If the conditions are favorable for in-situ burning, the proper approvals have been obtained and the proper planning is in place, in-situ burning of oil may be attempted. Slick containment boom would be immediately called out and on-scene as soon as possible. Offshore response strategies may include attempting to skim utilizing CGA spill response equipment, with a total derated skimming capacity of 99,170 barrels. Temporary storage associated with skimming equipment equals 4,249 barrels. If additional storage is needed, various storage barges with a total capacity 109,000 barrels may be mobilized and centrally located to provide temporary storage and minimize off-loading time. **Safety is first priority. Air monitoring will be accomplished and operations deemed safe prior to any containment/skimming attempts.**

If the spill went unabated, shoreline impact in Plaquemines Parish, Louisiana would depend upon existing environmental conditions. Shoreline protection would include the use of CGA's near shore and shallow water skimmers with a totaled derated skimming capacity of 19,617 barrels. Temporary storage associated with skimming equipment equals 838 barrels. If additional storage is needed, a 20,000 barrel storage barge may be mobilized and centrally located to provide temporary storage and minimize off-loading time. Onshore response may include the deployment of shoreline boom on beach areas, or protection and sorbent boom on vegetated areas. Master Service Agreements with AMPOL and OMI Environmental will ensure access to 155,350 feet of 18" shoreline protection boom. Figure 2 outlines individual times needed for procurement, load out, travel time to the site and deployment. Strategies would be based upon surveillance and real time trajectories that depict areas of potential impact given actual sea and weather conditions. Applicable Area Contingency Plans (ACPs), Geographic Response Plans (GRPs), and Unified Command (UC) will be consulted to ensure that environmental and special economic resources are correctly identified and prioritized to ensure optimal protection. Shoreline protection strategies depict the protection response modes applicable for oil spill cleanup operations. As a secondary resource, the State of Louisiana Initial Oil Spill Response Plan will be consulted as appropriate to provide detailed shoreline protection strategies and describe necessary action to keep the oil spill from entering Louisiana's coastal wetlands. The UC should take into consideration all appropriate items detailed in Tactics discussion of this Appendix. The UC and their personnel have the option to modify the deployment and operation of equipment to allow for a more effective response to site-specific circumstances. Walter's contract Incident Management Team has access to the applicable ACP(s) and GRP(s).

Based on the anticipated worst case discharge scenario, Walter can be onsite with contracted oil spill recovery equipment with adequate response capacity to contain and recover surface hydrocarbons, and prevent land impact, to the maximum extent practicable, within an estimated 48 hours (based on the equipment's Effective Daily Recovery Capacity (EDRC)).

Initial Response Considerations

Actual actions taken during an oil spill response will be based on many factors to include but not be limited to:

- Safety
- Weather
- Equipment and materials availability
- Ocean currents and tides
- Location of the spill
- Product spilled
- Amount spilled
- Environmental risk assessments
- Trajectory and product analysis
- Well status, i.e., shut in or continual release

Walter will take action to provide a safe, aggressive response to contain and recover as much of the spilled oil as quickly as it is safe to do so. In an effort to protect the environment, response actions will be designed to provide an "in-depth" protection strategy meant to recover as much oil as possible as far from environmentally sensitive areas as possible. Safety will take precedence over all other considerations during these operations.

Coordination of response assets will be supervised by the designation of a SIMOPS group as necessary for close quarter vessel response activities. Most often, this group will be used during source control events that require a significant number of large vessels operating independently to complete a common objective, in close coordination and support of each other. This group must also monitor the subsurface activities of each vessel (ROV, dispersant application, well control support, etc.). The SIMOPS group leader reports to the Source Control Section Chief.

In addition, these activities will be monitored by the Incident Management Team (IMT) and Unified Command via a structured Common Operating Picture (COP) established to track resource and slick movement in real time.

Upon notification of a spill, the following actions will be taken:

- Information will be confirmed
- An assessment will be made and initial objectives set
- OSROs and appropriate agencies will be notified
- ICS 201, Initial Report Form completed
- Initial Safety plan will be written and published
- Unified Command will be established
 - Overall safety plan developed to reflect the operational situation and coordinated objectives
 - Areas of responsibility established for Source Control and each surface operational site
 - o On-site command and control established

Offshore Response Actions

Equipment Deployment

Surveillance

- Surveillance Aircraft: within two hours of QI notification, or at first light
- Provide trained observer to provide on site status reports
- Provide command and control platform at the site if needed
- Continual surveillance of oil movement by remote sensing systems, aerial photography and visual confirmation
- Continual monitoring of vessel assets using vessel monitoring systems

Dispersant application assets

- Put ASI on standby
- With the FOSC, conduct analysis to determine appropriateness of dispersant application (refer to Section 18)
- Gain FOSC approval for use of dispersants on the surface
- Deploy aircraft in accordance with a plan developed for the actual situation
- Coordinate movement of dispersants, aircraft, and support equipment and personnel
- Confirm dispersant availability for current and long range operations
- Start ordering dispersant stocks required for expected operations

Containment boom

- Call out early and expedite deployment to be on scene ASAP
- Ensure boom handling and mooring equipment is deployed with boom
- Provide continuing reports to vessels to expedite their arrival at sites that will provide for their most effective containment
- Use Vessels of Opportunity (VOO) to deploy and maintain boom

Oceangoing Boom Barge

- Containment at the source
- Increased/enhanced skimmer encounter rate
- Protection booming

In-situ Burn assets

- Determine appropriateness of in-situ burn operation in coordination with the FOSC and affected SOSC
- Determine availability of fire boom and selected ignition systems
- Start ordering fire boom stocks required for expected operations
- Contact boom manufacturer to provide training & tech support for operations, if required
- Determine assets to perform on water operation
- Build operations into safety plan
- Conduct operations in accordance with an approved plan
- Initial test burn to ensure effectiveness

Dedicated off-shore skimming systems

General

- Deployed to the highest concentration of oil
- Assets deployed at safe distance from aerial dispersant and in-situ burn operations

CGA HOSS Barge

- Use in areas with heaviest oil concentrations
- Consider for use in areas of known debris (seaweed, and other floating materials)

CGA 95' Fast Response Vessels (FRVs)

- Designed to be a first vessel on scene
- Capable of maintaining the initial Command and Control function for on water recovery operations
- 24 hour oil spill detection capability
- Highly mobile and efficient skimming capability
- Use as far off-shore as safely possible

CGA FRUs

- To the area of the thickest oil
- Use as far off-shore as allowed
- VOOs 140' 180' in length
- VOOs with minimum of 18' x 38' or 23' x 50' of optimum deck space
- VOOs in shallow water should have a draft of <10 feet when fully loaded

T&T Koseq Skimming Systems

- To the area of the thickest oil
- Use as far off-shore as allowed
- VOOs with a minimum of 2,000 bbls storage capacity
- VOOs at least 200' in length
- VOOs with deck space of 100' x 40' to provide space for arms, tanks, and crane
- VOOs for shallow water should be deck barges with a draft of <10 feet when fully loaded

Storage Vessels

- Establish availability of CGA contracted assets (See Appendix E)
- Early call out (to allow for tug boat acquisition and deployment speeds)
- Phase mobilization to allow storage vessels to arrive at the same time as skimming systems
- Position as closely as possible to skimming assets to minimize offloading time

Vessels of Opportunity (VOO)

- Use Walter's contracted resources as applicable
- Industry vessels are ideal for deployment of Vessel of Opportunity Skimming Systems (VOSS)
- Acquire additional resources as needed
- Consider use of local assets, i.e. fishing and pleasure craft for ISB operations or boom tending
- Expect mission specific and safety training to be required
- Plan with the US Coast Guard for vessel inspections
- Place VOOs in Division or Groups as needed
- Use organic on-board storage if appropriate
- Maximize non-organic storage appropriate to vessel limitations
- Decant as appropriate after approval to do so has been granted
- Assign bulk storage barges to each Division/Group
- Position bulk storage barges as close to skimming units as possible
- Utilize large skimming vessel (e.g. barges) storage for smaller vessel offloading
- Maximize skimming area (swath) to the optimum width given sea conditions and available equipment
- Maximize use of oleophilic skimmers in all operations, but especially offshore
- Nearshore, use shallow water barges and shuttle to skimming units to minimize offloading time
- Plan and equip to use all offloading capabilities of the storage vessel to minimize offloading time

Adverse Weather Operations:

In adverse weather, when seas are ≥ 3 feet, the use of larger recovery and storage vessels, oleophilic skimmers, and large offshore boom will be maximized. KOSEQ Arm systems are built for rough conditions, and they should be used until their operational limit (9.8' seas) is met. Safety will be the overriding factor in all operations and will cease at the order of the Unified Command, vessel captain, or in an emergency, "stop work" may be directed by any crew member.

Surface Oil Recovery Considerations and Tactics (Offshore and Near-shore Operations)

Maximization of skimmer-oil encounter rate

- Place barges in skimming task forces, groups, etc., to reduce recovered oil offloading time
- Place barges alongside skimming systems for immediate offloading of recovered oil when practicable
- Use two vessels, each with heavy sea boom, in an open-ended "V" configuration to funnel surface oil into a trailing skimming unit's organic, V-shaped boom and skimmer (see page 7, *CGA Equipment Guide Book and Tactic Manual* (CGATM)

- Use secondary vessels and heavy sea boom to widen boom swath beyond normal skimming system limits (see page 15, CGATM)
- Consider night-time operations, first considering safety issues
- Utilize all available advanced technology systems (IR, X-Band Radar, etc.) to determine the location of, and move to, recoverable oil
- Confirm the presence of recoverable oil prior to moving to a new location

Maximize skimmer system efficiency

- Place weir skimming systems in areas of calm seas and thick oil
- Maximize the use of oleophilic skimming systems in heavier seas
- Place less mobile, high EDRC skimming systems (e.g. HOSS Barge) in the largest pockets of the heaviest oil
- Maximize onboard recovered oil storage for vessels.
- Obtain authorization for decanting of recovered water as soon as possible
- Use smaller, more agile skimming systems to recover streamers of oil normally found farther from the source. Place recovered oil barges nearby

Recovered Oil Storage

- Smaller barges in larger quantities will increase flexibility for multi-location skimming operations
- Place barges in skimming task forces, groups, etc., to reduce recovered oil offloading time
- Procure and deploy the maximum number of portable tanks to support Vessel of Opportunity Skimming Systems if onboard storage is not available
- Maximize use of the organic recovered oil storage capacity of the skimming vessel

Command, Control, and Communications (C^3)

- Publish, implement, and fully test an appropriate communications plan
- Design an operational scheme, maintaining a manageable span of control
- Designate and mark C^3 vessels for easy aerial identification
- Designate and employ C^3 aircraft for task forces, groups, etc.
- Use reconnaissance air craft and Rapid Response Teams (RAT) to confirm the presence of recoverable oil

On Water Recovery Group

When the first skimming vessel arrives on scene, a complete site assessment will be conducted before recovery operations begin. Once it is confirmed that the air monitoring readings for O2, LEL, H2S, CO, VOC, and Benzene are all within the permissible limits, oil recovery operations may begin.

As skimming vessels arrive, they will be organized to work in areas that allow for the most efficient vessel operation and free vessel movement in the recovery of oil. Vessel groups will vary in structure as determined by the Operations Section of the Unified Command, but will generally consist, at a minimum, of the following dedicated assets:

- 3 to 5 Offshore skimming vessels (recovery)
- 1 Tank barge (temporary storage)
- 1 Air asset (tactical direction)
- 2 Support vessels (crew/utility for supply)
- 6 to 10 Boom vessels (enhanced booming)

Example (*Note:* Actual organization of TFs will be dependent on several factors including, asset availability, weather, spilled oil migration, currents, etc.)

The 95' FRV Breton Island out of Venice arrives on scene and conducts an initial site assessment. Air monitoring levels are acceptable and no other visual threats have been observed. The area is cleared for safe skimming operations. The Breton Island assumes command and control (CoC) of on-water recovery operations until a dedicated non-skimming vessel arrives to relieve it of those duties.

A second 95' FRV arrives and begins recovery operations alongside the Breton Island. Several more vessels begin to arrive, including a third 95' FRV out of Galveston, the HOSS Barge (High Volume Open Sea Skimming System) out of Harvey, a boom barge (CGA 300) with 25,000' of 42" auto boom out of Leeville, and 9 Fast Response Units (FRUs) from the load-out location at C-Port in Port Fourchon.

As these vessels set up and begin skimming, they are grouped into task forces (TFs) as directed by the Operations Section of the Unified Command located at the command post.

Initial set-up and potential actions:

- A 1,000 meter safety zone has been established around the incident location for vessels involved in Source Control
- The HOSS Barge is positioned facing the incident location just outside of this safety zone or at the point where the freshest oil is reaching the surface
- The HOSS Barge engages its Oil Spill Detection (OSD) system to locate the heaviest oil and maintains that ability for 24-hour operations

- The HOSS Barge deploys 1,320' of 67" Sea Sentry boom on each side, creating a swath width of 800'
- The Breton Island and H.I. Rich skim nearby, utilizing the same OSD systems as the HOSS Barge to locate and recover oil
- Two FRUs join this group and it becomes TF1
- The remaining 7 FRUs are split into a 2 and 3 vessel task force numbered TF2 and TF3
- A 95' FRV is placed in each TF
- The boom barge (CGA 300) is positioned nearby and begins deploying auto boom in sections between two utility vessels (1,000' to 3,000' of boom, depending on conditions) with chain-link gates in the middle to funnel oil to the skimmers
- The initial boom support vessels position in front of TF2 and TF3
- A 100,000+ barrel offshore tank barge is placed with each task force as necessary to facilitate the immediate offload of skimming vessels

The initial task forces (36 hours in) may be structured as follows:

TF 1

- 1 95' FRV
- 1 HOSS Barge with 3 tugs
- 2 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 8-500' sections of auto boom with gates
- 8 Boom-towing vessels
- 2 Support vessels (crew/utility)

TF 2

- 1 95' FRV
- 4 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 10-500' sections of auto boom with gates
- 10 Boom-towing vessels
- 2 Support vessels (crew/utility)

TF 3

- 1 95' FRV
- 3 FRUs
- 1 100,000+ barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 8 500' sections of auto boom with gates
- 8 Boom-towing vessels
- 2 Support vessels (crew/utility)

Offshore skimming equipment continues to arrive in accordance with the ETA data listed in figure H.3a; this equipment includes 2 AquaGuard skimmers and 11 sets of Koseq Rigid Skimming Arms. These high volume heavy weather capable systems will be divided into functional groups and assigned to specific areas by the Operations Section of the Unified Command.

At this point of the response, the additional TFs may assume the following configurations:

TF 4

- 2 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 AquaGuard Skimmer
- 1 100,000 + barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

TF 5

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 AquaGuard Skimmer
- 1 100,000 + barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 8-500' sections of auto boom with gates
- 8 Boom-towing vessels

TF 6

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 100,000 + barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

TF 7

- 3 Sets of Koseq Rigid Skimming Arms w/ associated 200'+ PIDVs
- 1 100,000 + barrel tank barge and associated tug(s)
- 1 Dedicated air asset for tactical direction
- 2 Support vessels (crew/utility)
- 6-500' sections of auto boom with gates
- 6 Boom-towing vessels

CGA Minimum Acceptable Capabilities for Vessels of Opportunity (VOO)

Minimum acceptable capabilities of Petroleum Industry Designed Vessels (PIDV) for conducting Vessel of Opportunity (VOO) skimming operations are shown in the table below. PIDVs are "purpose-built" to provide normal support to offshore oil and gas operators. They include but are not limited to utility boats, offshore supply vessels, etc. They become VOOs when tasked with oil spill response duties.

Capability	FRU	KOSEQ	AquaGuard		
Type of Vessel	Utility Boat	Offshore Supply Vessel	Utility Boat		
Operating parameters					
Sea State	3-5 ft max	9.8 ft max	3-5 ft max		
Skimming speed	$\leq 1 \text{ kt}$	≤ 3 kts	≤1 kt		
Vessel size					
Minimum Length	100 ft	200 ft	100 ft		
Deck space for: • Tank(s) • Crane(s) • Boom Reels • Hydraulic Power Units • Equipment Boxes	18x32 ft	100x40 ft	18x32 ft		
Communication Assets	Marine Band Radio	Marine Band Radio	Marine Band Radio		

Tactical use of Vessels of Opportunity (VOO): Walter will take all possible measures to maximize the oil-to-skimmer encounter rate of all skimming systems, to include VOOs, as discussed in this section. VOOs will normally be placed within an On-water recovery unit as shown in figures below.

Skimming Operations: PIDVs are the preferred VOO skimming platform. OSROs are more versed in operating on these platforms and the vessels are generally large enough with crews more likely versed in spill response operations. They also have a greater possibility of having on-board storage capacity and the most likely vessels to be under contract, and therefore more readily available to the operator. These vessels would normally be assigned to an on-water recovery group/division (see figure below) and outfitted with a VOSS suited for their size and capabilities. Specific tactics used for skimming operations would be dependent upon many parameters which include, but are not limited to, safety concerns, weather, type VOSS on board, product being recovered, and area of oil coverage. Planners would deploy these assets with the objective of safely maximizing oil- to-skimmer encounter rate by taking actions to minimize non-skimming time and maximizing boom swath. Specific tactical configurations are shown in figures below.

The Fast Response Unit (FRU): A self-contained, skid based, skimming system that is deployed from the right side of a vessel of opportunity (VOO). An outrigger holds a 75' long section of air inflatable boom in place that directs oil to an apex for recovery via a Foilex 250 weir skimmer. The outrigger creates roughly a 40' swath width dependent on the VOO beam. The lip of the collection bowl on the skimmer is placed as close to the oil and water interface as possible to maximize oil recovery and minimize water retention. The skimmer then pumps all fluids recovered to the storage tank where it is allowed to settle, and with the approval of the Coast Guard, the water is decanted from the bottom of the tank back into the water ahead of the containment boom to be recycled through the system. Once the tank is full of as much pure recovered oil as possible it is offloaded to a storage tank can be added if the appropriate amount of deck space is available to use as secondary storage.

Tactical Overview

Mechanical Recovery – The FRU is designed to provide fast response skimming capability in the offshore and nearshore environment in a stationary or advancing mode. It provides a rated daily recovery capacity of 4,100 barrels. An additional boom reel with 440' of offshore boom can be deployed along with the FRU, and a second support vessel for boom towing, to extend the swath width when attached to the end of the fixed boom. The range and sustainability offshore is dependent on the VOO that the unit is placed on, but generally these can stay offshore for extended periods. The FRU works well independently or assigned with other on-water recovery assets in a task force. In either case, it is most effective when a designated aircraft is assigned to provide tactical direction to ensure the best placement in recoverable oil.

Maximum Sea Conditions – Under most circumstances the FRU can maintain standard oil spill recovery operations in 2' to 4' seas. Ultimately, the Coast Guard licensed Captain in charge of the VOO (with input from the CGAS Supervisor assigned) will be responsible to determine when the sea conditions have surpassed the vessel's safe operating capabilities.

Possible Task Force Configuration (Multiple VOOs can be deployed in a task force)

- 1 VOO (100' to 165' Utility or Supply Vessel)
- 1 Boom reel w/support vessel for towing
- 1 Tank barge (offshore) for temporary storage
- 1 Utility/Crewboat (supply)
- 1 Designated spotter aircraft

The VOSS (yellow) is being deployed and connected to an out-rigged arm. This is suitable for collection in both large pockets of oil and for recovery of streaming oil. The oil-to-skimmer encounter rate is limited by the length of the arm. Skimming pace is ≤ 1 knot.

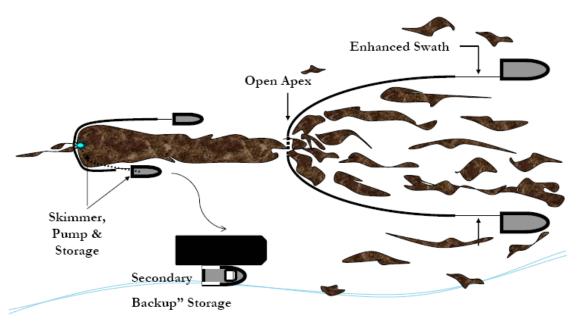
Through the use of an additional VOO, and using extended sea boom, the swath of the VOSS is increased therefore maximizing the oil-to-skimmer encounter rate. Skimming pace is ≤ 1 knot.

The Koseq Rigid Sweeping Arm: A skimming system deployed on a vessel of opportunity. It requires a large Offshore or Platform Supply Vessel (OSV/PSV), greater than 200' with at least 100' x 50' of free deck space. On each side of the vessel, a 50' long rigid framed Arm is deployed that consists of pontoon chambers to provide buoyancy, a smooth nylon face, and a hydraulically adjustable mounted weir skimmer. The Arm floats independently of the vessel and is attached by a tow bridle and a lead line. The movement of the vessel forward draws the rubber end seal of the arm against the hull to create a collection point for free oil directed to the weir by the Arm face. The collection weir is adjusted to keep the lip as close to the oil water interface as possible to maximize oil recovery while attempting to minimize excess water collection. A transfer pump (combination of positive displacement, screw type and centrifuge suited for highly viscous oils) pump the recovered liquid to portable tanks and/or dedicated fixed storage tanks onboard the vessel. After being allowed to sit and separate, with approval from the Coast Guard, the water can be decanted (pumped off) in front of the collection arm to be reprocessed through the system. Once full with as much pure recovered oil as possible, the oil is transferred to a temporary storage barge where it can be disposed of in accordance with an approved disposal plan.

Tactical Overview

Mechanical Recovery – Deployed on large vessels of opportunity (VOO) the Koseq Rigid Sweeping Arms are high volume surge capacity deployed to increase recovery capacity at the source of a large oil spill in the offshore and outer nearshore environment of the Gulf of Mexico. They are highly mobile and sustainable in rougher sea conditions than normal skimming vessels (9.8' seas). The large Offshore Supply Vessels (OSV) required to deploy the Arms are able to remain on scene for extended periods, even when sea conditions pick up. Temporary storage on deck in portable tanks usually provides between 1,000 and 3,000 bbls. In most cases, the OSV will be able to pump 20% of its deadweight into the liquid mud tanks in accordance with the vessels Certificate of Inspection (COI). All storage can be offloaded utilizing the vessels liquid transfer system.

Maximum Sea Conditions - Under most circumstances the larger OSVs are capable of remaining on scene well past the Skimming Arms maximum sea state of 9.8'. Ultimately it will be the decision of the VOO Captain, with input from the T&T Supervisor onboard, to determine when the sea conditions have exceeded the safe operating conditions of the vessel.


Command and Control – The large OSVs in many cases have state of the art communication and electronic systems, as well as the accommodations to support the function of directing all skimming operations offshore and reporting back to the command post.

Possible Task Force Configuration (Multiple Koseq VOOs can be deployed in a task force)

 $1 - \ge 200$ ' Offshore Supply Vessels (OSV) with set of Koseq Arms

2 to 4 portable storage tanks (500 bbl)

- 1 Modular Crane Pedestal System set (MCPS) or 30 cherry picker (crane) for deployment
- 1 Tank barge (offshore) for temporary storage
- 1 Utility/Crewboat (supply)
- 1 Designated spotter aircraft
- 4 Personnel (4 T&T OSRO)

Scattered oil is "caught" by two VOO and collected at the apex of the towed sea boom. The oil moves thought a "gate" at that apex, forming a larger stream of oil which moves into the boom of the skimming vessel. Operations are paced at >1. A recovered oil barge stationed nearby to minimize time taken to offload recovered oil.

This is a depiction of the same operation as above but using KOSEQ Arms. In this configuration, the collecting boom speed dictates the operational pace at ≥ 1 knot to minimize entrainment of the oil.

Clean Gulf Associates (CGA) Procedure for Accessing Member-Contracted and other Vessels of Opportunity (VOOs) for Spill Response

- CGA has procedures in place for CGA member companies to acquire vessels of opportunity (VOOs) from an existing CGA member's contracted fleet or other sources for the deployment of CGA portable skimming equipment including Koseq Arms, Fast Response Units (FRUs) and any other portable skimming system(s) deemed appropriate for the response for a potential or actual oil spill, WCD oil spill or a Spill of National Significance (SONS).
- CGA uses Port Vision, a web-based vessel and terminal interface that empowers CGA to track vessels through Automatic Identification System (AIS) and terminal activities using a Geographic Information System (GIS). It provides live AIS/GIS views of waterways showing current vessel positions, terminals, created vessel fleets, and points-of-interest. Through this system, CGA has the ability to get instant snapshots of the location and status of all vessels contracted to CGA members, day or night, from any web-enabled PC.

Near Shore Response Actions

Timing

- Put near shore assets on standby and deployment in accordance with planning based on the actual situation, actual trajectories and oil budgets
- VOO identification and training in advance of spill nearing shoreline if possible
- Outfitting of VOOs for specific missions
- Deployment of assets based on actual movement of oil

Considerations

- Water depth, vessel draft
- Shoreline gradient
- State of the oil
- Use of VOOs
- Distance of surf zone from shoreline

Surveillance

- Provide trained observer to direct skimming operations
- Continual surveillance of oil movement by remote sensing systems, aerial photography and visual confirmation
- Continual monitoring of vessel assets

Dispersant Use

- Generally will not be approved within 3 miles of shore or with less than 10 meters of water depth
- Approval would be at Regional Response Team level (Region 6)

Dedicated Near Shore skimming systems

- FRVs
- Egmopol and Marco SWS
- Operate with aerial spotter directing systems to observed oil slicks

VOO

- Use Walter's contracted resources as applicable
- Industry vessel are usually best for deployment of Vessel of Opportunity Skimming Systems (VOSS)
- Acquire additional resources as needed
- Consider use of local assets, i.e. fishing and pleasure craft
- Expect mission specific and safety training to be required
- Plan with the US Coast Guard for vessel inspections
- Operate with aerial spotter directing systems to oil patches

Shoreline Protection Operations

Response Planning Considerations

- Review appropriate Area Contingency Plan(s)
- Locate and review appropriate Geographic Response and Site Specific Plans
- Refer to appropriate Environmentally Sensitive Area Maps
- Capability for continual analysis of trajectories run periodically during the response
- Environmental risk assessments (ERA) to determine priorities for area protection
- Time to acquire personnel and equipment and their availability
- Refer to the State of Louisiana Initial Oil Spill Response Plan, Deep Water Horizon, dated 2 May 2010, as a secondary reference
- Aerial surveillance of oil movement
- Pre-impact beach cleaning and debris removal
- Shoreline Cleanup Assessment Team (SCAT) operations and reporting procedures
- Boom type, size and length requirements and availability
- Possibility of need for In-situ burning in near shore areas
- Current wildlife situation, especially status of migratory birds and endangered species in the area
- Check for Archeological sites and arrange assistance for the appropriate state agency when planning operations the may impact these areas

Placement of boom

- Position boom in accordance with the information gained from references listed above and based on the actual situation
- Determine areas of natural collection and develop booming strategies to move oil into those areas
- Assess timing of boom placement based on the most current trajectory analysis and the availability of each type of boom needed. Determine an overall booming priority and conduct booming operations accordingly. Consider:
 - o Trajectories
 - Weather forecast
 - Oil Impact forecast
 - o Verified spill movement
 - Boom, manpower and vessel (shallow draft) availability
 - o Near shore boom and support material, (stakes, anchors, line)

Beach Preparation - Considerations and Actions

- Use of a 10 mile go/no go line to determine timing of beach cleaning
- SCAT reports and recommendations
- Determination of archeological sites and gaining authority to enter
- Monitoring of tide tables and weather to determine extent of high tides
- Pre cleaning of beaches by moving waste above high tide lines to minimize waste
- Determination of logistical requirements and arranging of waste removal and disposal

- Staging of equipment and housing of response personnel as close to the job site as possible to maximize on-site work time
- Boom tending, repair, replacement and security (use of local assets may be advantageous)
- Constant awareness of weather and oil movement for resource re-deployment as necessary
- Earthen berms and shoreline protection boom may be considered to protect sensitive inland areas
- Requisitioning of earth moving equipment
- Plan for efficient and safe use of personnel, ensuring:
 - A continual supply of the proper Personal Protective Equipment
 - Heating or cooling areas when needed
 - Medical coverage
 - Command and control systems (i.e. communications)
 - Personnel accountability measures
- Remediation requirements, i.e., replacement of sands, rip rap, etc.
- Availability of surface washing agents and associated protocol requirements for their use (see National Contingency Plan Product Schedule for list of possible agents)
- Discussions with all stakeholders, i.e., land owners, refuge/park managers, and others as appropriate, covering the following:
 - Access to areas
 - Possible response measures and impact of property and ongoing operations
 - o Determination of any specific safety concerns
 - o Any special requirements or prohibitions
 - Area security requirements
 - o Handling of waste
 - o Remediation expectations
 - Vehicle traffic control
 - o Domestic animal safety concerns
 - Wildlife or exotic game concerns/issues

Inland and Coastal Marsh Protection and Response

Considerations and Actions

- All considered response methods will be weighed against the possible damage they may do to the marsh. Methods will be approved by the Unified Command only after discussions with local Stakeholder, as identified above.
 - In-situ burn may be considered when marshes have been impacted
- Passive clean up of marshes should considered and appropriate stocks of sorbent boom and/or sweep obtained.
- Response personnel must be briefed on methods to traverse the marsh, i.e.,
 - use of appropriate vessel
 - use of temporary walkways or road ways
- Discuss and gain approval prior cutting or moving vessels through vegetation
- Discuss use of vessels that may disturb wildlife, i.e, airboats
- Safe movement of vessels through narrow cuts and blind curves

- Consider the possibility that no response in a marsh may be best
- In the deployment of any response asset, actions will be taken to ensure the safest, most efficient operations possible. This includes, but is not limited to:
 - Placement of recovered oil or waste storage as near to vessels or beach cleanup crews as possible.
 - Planning for stockage of high use items for expeditious replacement
 - Housing of personnel as close to the work site as possible to minimize travel time
 - Use of shallow water craft
 - Use of communication systems appropriate ensure command and control of assets
 - Use of appropriate boom in areas that I can offer effective protection
 - Planning of waste collection and removal to maximize cleanup efficiency
- Consideration or on-site remediation of contaminated soils to minimize replacement operations and impact on the area

Decanting Strategy

Recovered oil and water mixtures will typically separate into distinct phases when left in a quiescent state. When separation occurs, the relatively clean water phase can be siphoned or decanted back to the recovery point with minimal, if any, impact. Decanting therefore increases the effective on-site oil storage capacity and equipment operating time. FOSC/SOSC approval will be requested prior to decanting operations. This practice is routinely used for oil spill recovery.

CGA Equipment Limitations

The capability for any spill response equipment, whether a dedicated or portable system, to operate in differing weather conditions will be directly in relation to the capabilities of the vessel the system in placed on. Most importantly, however, the decision to operate will be based on the judgment of the Unified Command and/or the Captain of the vessel, who will ultimately have the final say in terminating operations. Skimming equipment listed below may have operational limits which exceed those safety thresholds. As was seen in the Deepwater Horizon (DWH) oil spill response, vessel skimming operations ceased when seas reached 5-6 feet and vessels were often recalled to port when those conditions were exceeded. Systems below are some of the most up-to-date systems available and were employed during the DWH spill.

Boom	3 foot seas, 20 knot winds
Dispersants	Winds more than 25 knots
	Visibility less than 3 nautical miles
	Ceiling less than 1,000 feet.
FRU	8 foot seas
HOSS Barge/OSRB	8 foot seas
Koseq Arms	8 foot seas
OSRV	4 foot seas

Environmental Conditions in the GOM

Louisiana is situated between the easterly and westerly wind belts, and therefore, experiences westerly winds during the winter and easterly winds in the summer. Average wind speed is generally 14-15 mph along the coast. Wave heights average 4 and 5 feet. However, during hurricane season, Louisiana has recorded wave heights ranging from 40 to 50 feet high and winds reaching speeds of 100 mph. Because much of southern Louisiana lies below sea level, flooding is prominent.

Surface water temperature ranges between 70 and 80 $^{\circ}$ F during the summer months. During the winter, the average temperature will range from 50 and 60 $^{\circ}$ F.

The Atlantic and Gulf of Mexico hurricane season is officially from 1 June to 30 November. 97% of all tropical activity occurs within this window. The Atlantic basin shows a very peaked season from August through October, with 78% of the tropical storm days, 87% of the minor (Saffir-Simpson Scale categories 1 and 2) hurricane days, and 96% of the major (Saffir-Simpson categories 3, 4 and 5) hurricane days occurring then. Maximum activity is in early to mid September. Once in a few years there may be a hurricane occurring "out of season" - primarily in May or December. Globally, September is the most active month and May is the least active month.

FIGURE 1 TRAJECTORY BY LAND SEGMENT

Trajectory of a spill and the probability of it impacting a land segment have been projected utilizing Walter's WCD and information in the BOEM Oil Spill Risk Analysis Model (OSRAM) for the Central and Western Gulf of Mexico available on the BOEM website using 30 day impact. The results are tabulated below.

	OCS-G	Launch Area	Land Segment and/or Resource	Conditional Probability (%)
Change operator, provide for future emissions MP 270, Well B001 29 miles from shore	G22812	C53	Lafourche, LA Plaquemines, LA St. Bernard, LA Hancock & Harrison, MS Jackson, MS Mobile, AL Baldwin, AL Escambia, FL	1 25 9 1 2 2 2 1

WCD Scenario- BASED ON WELL BLOWOUT DURING PRODUCTION OPERATIONS (29 miles from shore)

4,700 bbls of condensate (24 hour volume considering natural weathering) API Gravity 45.4°

FIGURE 2 – Equipment Response Time to MP 270, Well B001

Dispersants/Surveillance									
Dispersant/Surveillance	Dispersant Capacity (gal)	Persons Req.	From	Hrs to Procure	Hrs to Loadout	Travel to site	Total Hrs		
ASI									
Basler 67T	2000	2	Houma	2	2	0.6	4.6		
DC 3	1200	2	Houma	2	2	0.7	4.7		
DC 3	1200	2	Houma	2	2	0.7	4.7		
Aero Commander	NA	2	Houma	2	2	0.6	4.6		

Offshore Equipment Storage Persons Hrs to Hrs to Travel to Hrs to Total EDRC VOO Hrs to GOM From **Pre-Determined Staging** Capacity Required Procure Loadout Spill Site Deploy Hrs CGA HOSS Barge 76285 4000 3 Tugs 12 Harvey 0 12 7.5 2 27.5 6 95' FRV 22885 249 NA 6 Venice 2 0 3 3 1 9 Boom Barge (CGA-300) 4 (Barge) 1 Tug 8 0 4 2 NA NA Leeville 15 29 42" Auto Boom (25000') 50 Crew 2 (Per Crew) Enterprise Marine Services LLC (Available through contract with CGA) CTCo 2605 NA 20000 1 Tug 6 Amelia 18.5 0 6 22.5 48 1 CTCo 2606 NA 20000 1 Tug 6 Amelia 18.5 0 6 22.5 1 48 CTCo 2607 18.5 22.5 NA 23000 1 Tug 6 Amelia 0 6 1 48 CTCo 2608 18.5 NA 23000 1 Tug 6 Amelia 0 6 22.5 1 48 CTCo 2609 NA 23000 1 Tug 6 18.5 0 6 22.5 48 Amelia 1

Offshore Response

Nearshore Response											
Nearshore Equipment Pre-determined Staging	EDRC	Storage Capacity	VOO	Persons Required	From	Hrs to Procure	Hrs to Loadout	Hrs to GOM	Travel to Spill Site	Hrs to Deploy	Total Hrs
Enterprise Marine Services LLC (Available through contract with CGA)											
CTCo 2604	NA	20000	1 Tug	6	Amelia	25	0	6	16	1	48

Staging Area: Venice

Nearshore Equipment With Staging	EDRC	Storage Capacity	VOO	Persons Req.	From	Hrs to Procure	Hrs to Load Out	Travel to Staging	Travel to Deployment	Hrs to Deploy	Total Hrs
				(CGA						
SWS Egmopol	1810	100	NA	3	Galveston	2	2	13	2	1	20
SWS Egmopol	1810	100	NA	3	Leeville	2	2	4.5	2	1	11.5
SWS Marco	3588	20	NA	3	Vermilion	2	2	8	2	1	15
SWS Marco	3588	34	NA	3	Leeville	2	2	4.5	2	1	11.5
SWS Marco	3588	34	NA	3	Venice	2	2	2	2	1	7
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Vermilion	4	12	8	2	2	28
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Galveston	4	12	13	2	2	33
Foilex Skim Package (TDS 150)	1131	50	1 Utility	3	Harvey	4	12	2	2	2	22
4 Drum Skimmer (Magnum 100)	680	100	1 Crew	3	Vermilion	2	2	8	2	1	15
4 Drum Skimmer (Magnum 100)	680	100	1 Crew	3	Harvey	2	2	2	2	1	9
2 Drum Skimmer (TDS 118)	240	100	1 Crew	3	Vermilion	2	2	8	2	1	15
2 Drum Skimmer (TDS 118)	240	100	1 Crew	3	Harvey	2	2	2	2	1	9

Shoreline Protection Boom	VOO	Persons Req.	Storage/Warehouse Location	Hrs to Procure	Hrs to Loadout	Travel to Staging	Travel to Deployment Site	Hrs to Deploy	Total Hrs		
	AMPOL (available through MSA)										
34,050' 18" Boom	13 Crew	26	New Iberia, LA	2	2	6	2	12	24		
12,850' 18" Boom	7 Crew	14	Chalmette, LA	2	2	2.5	2	6	14.5		
900' 18" Boom	1 Crew	2	Morgan City, LA	2	2	4.5	2	2	12.5		
3,200' 18" Boom	2 Crew	4	Venice, LA	2	2	0	2	2	8		
12,750' 18" Boom	7 Crew	14	Port Arthur, TX	2	2	10	2	6	22		
			OMI Environm	ental (available	through MSA	A)					
14,000' 18" Boom	6 Crew	12	Belle Chasse, LA	1	1	2	2	3	9		
2,000' 18" Boom	1 Crew	2	Galliano, LA	1	1	4	2	3	11		
1,800' 18" Boom	1 Crew	2	Gonzalez, LA	1	1	4	2	3	11		
11,800' 18" Boom	5 Crew	10	Harvey, LA	1	1	2	2	3	9		
2,000' 18" Boom	2 Crew	4	Houma, LA	1	1	4	2	3	11		
2,400' 18" Boom	2 Crew	4	Morgan City, LA	1	1	5	2	3	12		
3,800' 18" Boom	2 Crew	4	New Iberia, LA	1	1	6	2	3	13		
2,300' 18" Boom	2 Crew	4	Port Allen, LA	1	1	5	2	3	12		
1,500' 18" Boom	1 Crew	2	Venice, LA	1	1	0	2	3	7		
19,000' 18" Boom	6 Crew	12	Deer Park, TX	1	1	12	2	3	19		
11,000' 18" Boom	5 Crew	10	La Marque, TX	1	1	13	2	3	20		
20,000' 18" Boom	6 Crew	12	Port Arthur, TX	1	1	10	2	3	17		

Shoreline Protection

Wildlife Response	EDRC	Storage Capacity	VOO	Persons Req.	From	Hrs to Procure	Hrs to Loadout	Travel to Staging	Travel to Deployment	Hrs to Deploy	Total Hrs
CGA											
Wildlife Support Trailer	NA	NA	NA	2	Harvey	2	2	2	1	2	9
Bird Scare Guns (24)	NA	NA	NA	2	Harvey	2	2	2	1	2	9
Bird Scare Guns (12)	NA	NA	NA	2	Galveston	2	2	13	1	2	20
Bird Scare Guns (12)	NA	NA	NA	2	Aransas Pass	2	2	18	1	2	25
Bird Scare Guns (48)	NA	NA	NA	2	Vermilion	2	2	8	1	2	15
Bird Scare Guns (24)	NA	NA	NA	2	Leeville	2	2	4.4	1	2	11.4

Response Asset	Total
Offshore EDRC	99,170
Offshore Recovered Oil Capacity	113,249
Nearshore / Shallow Water EDRC	19,617
Nearshore / Shallow Water Recovered Oil Capacity	20,838

SECTION 10 ENVIRONMENTAL MONITORING INFORMATION

10.1 MONITORING SYSTEMS

There are no environmental monitoring systems currently in place or planned for the proposed activities.

10.2 INCIDENTAL TAKES

There is no reason to believe that any of the endangered species or marine mammals as listed in the Endangered Species Act (ESA) will be "taken" as a result of the operations proposed under this plan.

It has been documented that the use of explosives and/or seismic devices can affect marine life. Operations proposed in this plan will not be utilizing either of these devices.

Walter will adhere to the requirements as set forth in the following documents, as applicable, to avoid or minimize impacts to any of the species listed in the ESA as a result of the operations conducted herein:

- Appendices to the Biological Opinion on the Federally Regulated Oil and Gas Program in the Gulf of Mexico issued on March 13, 2020, and the amendment issued on April 26, 2021
 - Appendix A: "Seismic Survey Mitigation and Protected Species Observer Protocols"
 - o Appendix B: "Marine Trash and Debris Awareness and Elimination Survey Protocols"
 - Appendix C: "Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols"
 - o Appendix J: "Sea Turtle Handling and Resuscitation Guidelines"

SECTION 12 ENVIRONMENTAL MITIGATION MEASURES INFORMATION

12.1 MEASURES TAKEN TO AVOID, MINIMIZE, AND MITIGATE IMPACTS

Walter will adhere to the requirements as set forth in the following documents, as applicable, to avoid or minimize impacts to any marine and coastal environments and habitats, biota, and threatened and endangered species:

- Appendices to the Biological Opinion on the Federally Regulated Oil and Gas Program in the Gulf of Mexico issued on March 13, 2020, and the amendment issued on April 26, 2021
 - Appendix A: "Seismic Survey Mitigation and Protected Species Observer Protocols"
 - o Appendix B: "Marine Trash and Debris Awareness and Elimination Survey Protocols"
 - Appendix C: "Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols"
 - o Appendix J: "Sea Turtle Handling and Resuscitation Guidelines"

12.2 INCIDENTAL TAKES

Walter will adhere to the requirements set forth in the following documents, as applicable, to avoid or minimize impacts to any of the species listed in the Endangered Species Act (ESA) as a result of the operations conducted herein:

- Appendices to the Biological Opinion on the Federally Regulated Oil and Gas Program in the Gulf of Mexico issued on March 13, 2020, and the amendment issued on April 26, 2021
 - Appendix A: "Seismic Survey Mitigation and Protected Species Observer Protocols"
 - Appendix B: "Marine Trash and Debris Awareness and Elimination Survey Protocols"
 - Appendix C: "Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols"
 - Appendix J: "Sea Turtle Handling and Resuscitation Guidelines"

See **Section 6.1** for a list of Threatened and Endangered Species, Critical Habitat and Marine Mammal Information.

SECTION 15 ONSHORE SUPPORT FACILITIES INFORMATION

15.1 GENERAL

The onshore facilities to be used to provide supply and service support for the proposed activities are provided in the table below. The vessels, crew boats and supply boats associated with the operations proposed in this plan will not transit the Rice's whale area.

Name	Location	Existing/New/Modified
EPS Logistics	Golden Meadow, Louisiana	EPS Logistics
Stone Fuel*	Cameron, Louisiana	Existing
RLC Heliport	Galliano, Louisiana	Existing

* Walter will ultimately return to the EPS dock in Golden Meadow after dock debris is removed and repairs are made from Hurricane Ida. In the interim, Walter will use Stone Fuel.