Amoco Production Company
Attention: Mr. H. C. Van, Jr.
Post Office Box 50879
New Orleans, Louisiana 70150

Gentlemen:

Reference is made to the following plan received May 15, 1996:

Type Plan - Supplemental Development Operations Coordination Document
Leases - OCS 0576 and 0578
Blocks - 208 and 215
Area - Eugene Island
Activities Proposed - Well B and Well and Caisson C

In accordance with 30 CFR 250.34, this plan is hereby deemed submitted and is now being considered for approval.

Your control number is S-4007 and should be referenced in your communication and correspondence concerning this plan.

Sincerely,

Donald C. Howard
Regional Supervisor
Field Operations

bcc: Lease OCS 0576 POD File (MS 5032)
 Lease OCS 0578 POD File (MS 5032)
 MS 5034 w/public info. copy of the plan
 and accomp. info.

D'Trocquet:cic:05/17/96:DOCD.COM
H. C. Van, Jr.
Manager, Environment, Health & Safety

May 9, 1996

File: HCV-LF

Minerals Management Service
Office of Field Operations
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394

Attention: Regional Supervisor

Supplemental Development Operations
Coordination Document
Eugene Island Blocks 215 and 208
OCS-G-0578 and 0576
Offshore, Louisiana

Amoco respectfully requests your earliest favorable attention to this matter. Should further information be required, please contact me at telephone 504/586-6567.

Sincerely,

H. C. Van, Jr.

HCV

Attachments
A COMPLETE DESCRIPTION OF THE PROPOSED DEVELOPMENT ACTIVITIES TO BE
UNDERTAKEN INCLUDING A TENTATIVE SCHEDULE OF THE DATES AND SEQUENCES FOR
DRILLING WELLS AND INSTALLING FACILITIES.

Amoco Production Company (50%) and Texaco (50%) acquired Eugene Island Block 215, OCS-G-0578 in Lease Sale #3, held on 7/12/55. Bonus paid = $1,000,475.

Texaco Exploration and Production, Inc. designated Amoco Production Company operator of the below described portion of Eugene Island Block 208, OCS-0576 by Designation of Operator form dated January 11, 1996 and filed with the MMS on that date. This designation is applicable to the S/2 of the E/2 of Block 208, Eugene Island Area, insofar and only insofar as to those subsea depths from the surface down to and including the stratigraphic equivalent of the base of the "MS" Sand. The "MS" Sand being that certain sand identified on the electric log of OCS 0576, Well No. 4 between the measured depth interval of 9,713'-9,783'.

Eugene Island Blocks 215 and 208 are located approximately 45 miles offshore and southwest of Terrebonne Parish, Louisiana in approximately 100' of water.

Amoco plans to drill two wells in this supplemental development plan.

Activities proposed in the subject Development Operations Coordination Document are covered by a $3,000,000 areawide bond for subject lease. Amoco's Certificate of Financial Responsibility is #9,000,049.

Please reference Attachment No. 1 for the detailed Timing Schedule of the development plan.

A BRIEF DESCRIPTION OF THE TYPE OF DRILLING UNIT TO BE USED INCLUDING A
DISCUSSION OF ITS IMPORTANT SAFETY AND POLLUTION-PREVENTION FEATURES.

The wells will be drilled with a jack-up type drilling rig, similar to Falcon Drilling Company's Phoenix III. The rig is equipped with all the pollution-prevention and drilling equipment required by Title 30 CFR Part 250, Subparts C - Pollution Prevention and D - Drilling Operations. See Attachment 2 for the rig description.

Amoco will P&A an appropriate C-platform well and recover the slot for the proposed Well "B" borehole. Well "B" will be drilled and completed from the existing C-platform. Amoco will then move the rig to the Amoco OCS-G-0058 #12 4-pile Platform (herein designated the "E-platform") and fabricate a caisson guide to the structure. The proposed Well "C" will be drilled and completed from the E platform in EI 215. Production will be routed and processed through existing flowlines and equipment.
A complete safety system will be installed to shut off the wellhead in the event of potentially environmentally damaging occurrences. This system will shut in a wing valve on the Christmas tree and if further progression of unwanted events are initiated, a lower master valve and a down hole surface controlled subsurface safety valve will shut to stop hydrocarbon flow. This safety system will sense and stop unwanted events such as over pressure, low pressure, high level, low level, fire and other characteristics of flow which could result in environmental damage. These systems will be installed and maintained in accordance with current MMS regulations.

Amoco will be in compliance with all applicable safety and pollution standards of the MMS, USCG, OSHA and EPA. These safety standards will include but not be limited to:

- Navigation Lights & Horns
- Survival Capsules
- Life Rafts & Throw Rings
- Fire-Fighting Equipment (Both Dry Chemical & Light Water)
- Warning Horns
- Blow Out Preventers
- Safety Shut-Down Systems (As listed for Environmental)
- Personnel Station Bills

For drilling and production

Operations personnel will be in compliance with Title 30 CFR Part 250, Subpart O - Training. All personnel will be trained and will carry on drills and inspections to insure the proper maintenance and the ability to utilize all the existing equipment to the fullest extent to insure as safe an operation as possible.

There are no existing or planned monitoring systems for measuring environmental conditions for impact assessment in the lease area as none are required by the lease stipulations.

In accordance with 30 CFR 250.51(c), Amoco may be required to collect oceanographic, meteorological, and drilling unit performance data. Amoco will record and report this information when required.

A TABLE INDICATING THE SL, BHL, TVD, AND WATER DEPTH FOR EACH PROPOSED WELL. (THE BHL'S AND TVD'S MAY BE OMITTED FROM PUBLIC INFORMATION COPIES OF THE PLAN.)

Eugene Island Block 215:

Well "B": Surface: 6,200' FNL & 4,810' FEL (EI 215)
Lat: 28deg 38' 3.05"N Lon.: 91deg 29' 19.58"W
106' Water Depth

Well "C": Surface: 760' FNL & 6,830' FEL (EI 215)
Lat: 28deg 38' 56.87"N Lon.: 91deg 29' 42.33"W
A CURRENT STRUCTURE MAP (8 1/2" X 11") OF THE EXPECTED PRODUCTIVE FORMATIONS SHOWING THE SL AND BHL OF EACH PROPOSED WELL. (THIS MAP MAY BE OMITTED FROM PUBLIC INFORMATION COPIES OF THE PLAN.)

NOTE: Amoco Production Company believes all geologic information submitted under this section to be exempt from disclosure under the Freedom of Information Act and its implementing regulations. All Geological and Geophysical data including interpretations thereof, appearing on the map(s) are the private and confidential property of Amoco Production Company. The publication or reproduction thereof without the written permission of said company is strictly prohibited.

Attachment Nos. 3 and 4 are structure maps demonstrating structural relationships.

Attachment Nos. 5 and 6 are Structural Cross-Sections. Attachment Nos. 7 and 8 are Lines of Cross Section.

A BATHYMETRY MAP (8 1/2" X 11") SHOWING THE SL OF EACH PROPOSED FIXED STRUCTURE AND WELL.

Attachment No. 9 illustrates the surface location of the proposed well on a bathymetry map of the Block.

AN ANALYSIS OF ANY SEAFLOOR AND SUBSURFACE GEOLOGIC AND MANMADE FEATURES AND CONDITIONS WHICH MAY HAVE AN ADVERSE EFFECT ON THE PROPOSED OPERATIONS. THE ANALYSIS SHALL ADHERE TO THE PROVISIONS OF PARAGRAPH II.A OF NTL NO. 83-3.

Shallow Hazard Reports confirming that the proposed surface locations are free of seafloor anomalies, surface faults, and shallow gas accumulations were previously forwarded.

The entire Marine High-Resolution Geophysical Survey Report, was previously forwarded. The wells are being drilled from existing structures. The surface locations were previously cleared.

Amoco has complied with NTL 83-3 and will take all steps necessary to ensure that development and production operations are conducted in a competent manner, with a minimum risk to human life and the environment.

A SITE SPECIFIC OSCP AS DESCRIBED IN 30 CFR 250.42 OR A BRIEF DESCRIPTION OF THE APPROVED COMPANY REGIONAL OSCP FOR THE GOM THAT INCLUDES, AS IT PERTAINS TO THE PROPOSED OPERATIONS, (1) IDENTIFICATION OF THE PRIMARY
LOCATION OF CONTAINMENT AND REMOVAL EQUIPMENT, (2) AN ESTIMATION OF THE TIME REQUIRED FOR MOBILIZATION, TRANSPORTATION, AND DEPLOYMENT ONSITE OF THE EQUIPMENT AND MATERIALS, AND (3) A DISCUSSION WHICH IDENTIFIES THE ZONE(S) THAT APPROPRIATE AND AVAILABLE TRAJECTORY ANALYSES INDICATE MAY BE IMPACTED BY AN OIL SPILL, THE ENVIRONMENTALLY SENSITIVE RESOURCES AND AREAS WITHIN THE IMPACT ZONE(S), AND THE STRATEGIES TO BE USED TO PROTECT THESE RESOURCES FROM OIL SPILLS. IN THE DISCUSSION, IDENTIFY THE SPECIFIC SOURCE DOCUMENTS WHICH WERE USED TO DETERMINE THE IMPACT ZONE(S), THE ENVIRONMENTALLY SENSITIVE RESOURCES AND AREAS THAT COULD BE AFFECTED, AND THE OIL SPILL RESPONSE STRATEGIES.

Amoco's Oil Spill Contingency Plan is on file with the MMS and was last approved by the MMS on January 4, 1993. Amoco submitted its 1996 OSCP and is currently waiting approval. This plan is considered by Amoco to be a management tool. Its function is to provide the background and planning that are necessary in order to be prepared for rapid and judicious response in the event of a spill. It is not intended to limit or direct the activities of those responsible for containment and cleanup in the event of an actual spill. Under the emergency conditions of a spill, the decisions that must be made will be governed by conditions at the time of the spill and those occurring through the containment and cleanup phases.

Amoco's OSCP addresses company policies and procedures for responding to spills, hierarchy of personnel responsibilities, instructions for notification of spill, and information on various emergency procedures.

To help minimize the possibility of occurrence of a spill, Amoco will utilize state-of-the-art drilling and blowout prevention equipment and the best possible drilling practices by thoroughly trained personnel. In the unlikely event of an accidental spill, Amoco will utilize Clean Gulf Associates (CGA) equipment for cleanup purposes. The primary stockpile for this operation is located in Intracoastal City, Louisiana, but Amoco may utilize additional stockpiles in other Louisiana, Texas, Alabama and Florida locations, if they are needed.

CGA has five general types of equipment -- fast response open-sea skimmer systems, a high volume open-sea skimmer system, shallow water skimmer systems, communications equipment, and boat and helicopter spray systems. CGA also maintains a stockpile of dispersant which can be applied by boat, helicopter, or fixed-winged aircraft. Specific information on CGA equipment and supplies is contained in the CGA Operations Manual. Response and resource mobilization plans are outlined in Amoco's Oil Spill Contingency Plan along with the CGA Operations and "Ready Reference" Equipment Manuals.

In addition to those systems commonly utilized by industry to prevent pollution, Amoco is a member of Clean Gulf Associates which was founded in 1972 as a non-profit organization of energy companies cooperating to provide oil containment and clean-up capabilities in the Gulf of Mexico.

The organization contracts with Halliburton Services, a division of the Halliburton Company, to procure and maintain in 24-hour readiness the most advanced oil spill containment and clean-up equipment available and to
train personnel of member companies in its proper use. In addition, Amoco has contracted with Peterson-Reidel and International Cleanup, Inc. to provide trained personnel to respond on a 24 hour per day basis to any spill as directed by Amoco.

Amoco would respond initially by using existing oil spill equipment located on the I.D. Boat M/V John Michael G. located at South Marsh Island 240 which could be on location within 5.5 hours. Existing CGA oil spill skimming equipment with beach protection and bird cleaning stations can be on hand within 14.5 hours in the event of a spill. The CGA base is located in Intracoastal City, Louisiana.

Procurement Time
Assumption that vessel can be located in ICY with crews 4.0 hrs. * 1 hr. used to acquire boat
* 3 hrs. used to acquire personnel
* 2 hrs. used to assemble equipment

Subtotal 4.0 hrs.

Load Equipment .5 hr.
Travel Time Inland Waters 3.0 hrs. @ 9.2 mph
Travel Time Gulf Waters 6.5 hrs. @ 11.5 mph
Deploy equipment 0.5 hrs.

Total 14.5 hrs.

This equipment is maintained on standby and in a ready state at locations such as Panama City, Florida; Theodore, Alabama; Venice, Marrero, Metairie, Grand Isle, Houma, Intracoastal City, and Cameron, Louisiana; Texas City, Galveston, Fulton, Port Aransas, and Corpus Christi, Texas.

Amoco will be in compliance with all applicable safety and pollution standards of the MMS, USCG, OSHA, and the EPA. All personnel will be trained in the proper maintenance of existing equipment and will participate in drills and inspections designed to enhance their ability to utilize the equipment to its fullest extent and ensure as safe an operation as possible.

The main emphasis of Amoco's present lease area spill contingency planning will be on at-sea containment and mechanical recovery. However, this contingency planning effort does not discount the possibility of a spill reaching a sensitive coastal region.

According to the Final EIS for Sales 157 and 161, Figure IV-2, Eugene Island Block 273 is located within Oil Spill Launch Site C38 and any spill in this site would affect Land Segments 12, 13, 14, 15 and 16 which are Cameron, Vermilion, New Iberia, St. Mary and Terrebonne Parish, Louisiana. According to Table 6 in Oil Spill Risk Analysis Report for Sales 157 and 161, the respective spill probabilities are 9%, 9%, 5%, 2% and 2%.

A spill in these land segments would affect those biologically sensitive areas shown on Louisiana Maps 5 and 6 of Volume II of the CGA Operations
Manual. Amoco would initiate the outlined protection response modes for the affected biologically sensitive areas as provided in the CGA Manual for Louisiana Maps 5 and 6.

In the unlikely event Amoco's cleanup activities require additional support, the U. S. Coast Guard has Basic Ordering Agreements (BOA's) with local cleanup companies throughout the Gulf. These companies are used on a rotational basis. For large spills, the USCG Gulf Strike Team, located in Mobile, Alabama, is available upon request by the on-scene coordinator.

In addition, Amoco is a charter member of the Marine Preservation Association (MPA) and the Marine Spill Response Corporation (MSRC) and would exercise the use of MSRC personnel and equipment for spill response and cleanup in the event of a large spill. See Attachment 10 for information on MSRC.

A DISCUSSION OF ANY NEW OR UNUSUAL TECHNOLOGY TO BE EMPLOYED. THIS DISCUSSION MAY BE OMITTED FROM PUBLIC INFORMATION COPIES OF THIS PLAN. (FOR POE'S THAT ARE SUBJECT TO CZM CONSISTENCY REQUIREMENTS, THIS INFORMATION WILL BE PROVIDED WHEN COMPLYING WITH THE ENVIRONMENTAL INFORMATION REQUIREMENTS OF NTL NO. 86-09 WHICH ARE PRESENTED LATER IN THE PLAN.

No new or unusual technology will be employed during this proposed development operation.

A DISCUSSION OF THE MEASURES THAT HAVE BEEN OR WILL BE TAKEN TO SATISFY THE REQUIREMENTS OF APPLICABLE OPERATIONAL LEASE STIPULATIONS.

The lease agreement for this Block contains no unusual operational lease stipulation requirements.

A DISCUSSION OF THE QUANTITY, RATES OF DISCHARGE, AND COMPOSITION OF SOLID AND LIQUID WASTES AND POLLUTANTS LIKELY TO BE GENERATED BY ONSHORE AND OFFSHORE ACTIVITIES AND TRANSPORTATION OPERATIONS (INCLUDING, BUT NOT LIMITED TO, DRILLING MUDS AND CUTTINGS, PRODUCED WATER SEWAGE, AND CHEMICALS): THE BASIS FOR DETERMINING THE COMPOSITION, QUANTITIES AND RATES OF DISCHARGE OF POLLUTANTS: AND PLANS FOR TREATING, STORING, TRANSPORTING, AND DISPOSING OF SUCH WASTES AND POLLUTANTS.

Any discharges from drilling rig will be treated and monitored as required by the EPA NPDES permit for the Block (EI 215 GMG290005-025A).

The estimated solid and liquid drilling waste quantities expected to be discharged from each well from the proposed activities are given below:

Drilling Cuttings 2,091 bbl/well
Drilling Muds 702 bbl/well
A brief discussion of these wastes follows. All discharges will be in compliance with the EPA NPDES Permit (EI 215 - GKG290005-025A). The drilling cuttings from this operation will amount to approximately 2,091 bbl. These cuttings, generated at the drill bit and through chemical and mechanical erosion of the well-bore walls, are brought to the surface by the drilling muds. The cuttings are separated from the muds by fine screen shakers and centrifugal separators. After separation, the cuttings are discharged overboard and the muds are retained. The anticipated drilling cuttings discharge volumes and rates are based on the length of the interval to be drilled, hole size, estimated hole washout, and the projected time to drill the interval. See Attachment No. 1, Timing Schedule.

Approximately 702 bbl of drilling fluids will be discharged. These discharges include occasional excess cement slurry. The composition of drilling muds used in a particular well drilling program is determined by the conditions encountered as the well is being drilled. Components of the drilling fluid for these wells may include any or all of the following: barite, bentonite, caustic soda, lignosulfonate, lignite, aluminum stearate, soda ash, phosphate, gilsonite, polyacrylic cellulose, polyacrylamide, starch, bicarbonate of soda, lime, lost circulation material including KWIK SEAL and walnut hulls, carbomethylecellulose (CMS), non-toxic lubricants including COASTALUBE, ENVIROLUBE, DL-100 and DATALUBE, non-toxic spotting fluids including SPOTTY, NO- OIL, COASTASPOT, GLQ-2000, and bactericides excluding halogenated phenols. Any drilling mud, drill cuttings, sand, or other solids will not be discharged into the Gulf unless the toxicity as measured by the EPA "Drilling Fluids Toxicity Test" is above the 30,000 ppm limitation. In addition, no discharges that cause a sheen to appear on the surface of the water, will be made.

The drilling mud program is based on using several of the eight approved generic fluids which have been tested to establish toxicity and bioassay data as part of the Mid-Atlantic Bioassay Program. Special additives may be required on a non-routine basis to help free differentially stuck pipe. These additives are inert, or if mixed with mineral oil, will not be discharged into the Gulf unless all of the free oil has been removed. Any oil contaminated muds will be transported to shore for disposal at an approved facility or sold back to a mud company. All drilling rig discharges will be in compliance with the EPA NPDES Permit.

Solid wastes other than those generated at the onshore base will include combustibles (plastic containers, rags, miscellaneous timber, and paper from charts and forms) as well as some metals generated during the pipeline, caisson installation and drilling operations. The amount of combustibles generated will be approximately 200 cu. ft. per day during the flowline/caisson installation and approximately 500 c u. ft. per day during the drilling operations. There will be no pipe laying operations associated with this plan. The caisson operations are expected to take 2 days. The drilling and completion operations are expected to take 67 days. The combustibles will be compacted and/or collected in metal trash containers and shipped to the onshore support base for incineration or disposal at an approved disposal facility. Some of the metal, may be reused and reworked. The remaining metal wastes will be transported to
the onshore base and sold as scrap. Approximately 300 lb/wk of scrap metal is expected during the drilling phase and approximately 500 lb/wk of scrap metal is expected during the installation phase. This figure is highly variable depending on the phase and circumstances of the installation operation.

Solid wastes generated at the onshore support base will be variable depending on a variety of factors including the level of drilling, the number of supply vessels operating and their travel frequencies, and the number of onshore support personnel required. These wastes, consisting primarily of packing materials, containers, clothes, drums, cables, spools, and domestic refuse, will be recycled or reclaimed. The remaining material will be delivered to an approved disposal facility.

The estimated solid and liquid waste quantities expected to be generated from the proposed activities are given below.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Wastes</td>
<td>5,695 bbl (67 days @ 85 bbl/day)</td>
</tr>
<tr>
<td>Sanitary Wastes</td>
<td>70 bbl (2 days @ 35 bbl/day)</td>
</tr>
<tr>
<td>Solid Wastes:</td>
<td></td>
</tr>
<tr>
<td>Combustibles</td>
<td>33,500 cu ft (67 days @ 500 cu ft/day)</td>
</tr>
<tr>
<td>Combustibles</td>
<td>400 cu ft (2 days @ 200 cu ft/day)</td>
</tr>
<tr>
<td>Metals</td>
<td>2,871 lb (67 days @ 300 lb/week)</td>
</tr>
<tr>
<td>Metals</td>
<td>143 lb (2 days @ 500 lb/week)</td>
</tr>
<tr>
<td>Domestic Wastes</td>
<td>6,700 bbl (67 days @ 100 bbl/day)</td>
</tr>
<tr>
<td>Domestic Wastes</td>
<td>200 bbl (2 days @ 100 bbl/day)</td>
</tr>
</tbody>
</table>

Approximately 5,765 bbl of sanitary wastes will be generated. Sanitary wastes originate from commodes and urinals in the drilling rig, tugs, and lay barge/platform installation vessel quarters. These facilities are equipped with sewage treatment plants approved by the USCG. The sewage treatment plant of the drilling rig has an approximate limit of 85 bbl/day or 120-man capacity. Peak periods of use will occur at 0600, 1200, and 1800 hours.

Domestic wastes from sinks, showers, and washing machines aboard the tugs, lay barge/platform installation vessels will not contain any floating solids. The composition of the liquid domestic wastes is freshwater used for cooking, drinking, and washing and is discharged overboard. The total volume of these wastes will be approximately 6,900 bbl, depending on the size of the vessel crews and the number of other company and service personnel on board.

A DISCUSSION OF THE MEASURES THAT HAVE BEEN OR WILL BE TAKEN TO SATISFY THE REQUIREMENTS OF 30 CFR 250.67 (c) REGARDING H2S AREA CLASSIFICATION AND CONTINGENCY PLANS.

As no previously drilled wells in the area encountered any H2S, Amoco requests that Eugene Island Block 215 be approved by the Regional Supervisor as an operations area where the absence of H2S has been confirmed.
CERTIFICATE(S) OF COASTAL ZONE CONSISTENCY, AS REQUIRED BY 15 CFR 930 AND DISCUSSED IN SECTIONS III AND IV OF NTL NO. 86-09, PREPARED IN THE FORMAT PRESCRIBED IN SECTION IV OF THE ENCLOSURE TO NTL 86-09.

A LIST SHOWING THE PROJECTED EMISSIONS OF SO₂, TSP, NOₓ, CO, AND VOC. THE LIST SHALL INCLUDE ALL PROJECTED EMISSIONS FROM EACH SOURCE AND FROM EACH OCS FACILITY EXPRESSED IN POUNDS PER DAY AND IN TONS PER YEAR FOR EACH YEAR OF OPERATION AND THE BASIS FOR ALL CALCULATIONS. A SCHEMATIC DRAWING WHICH IDENTIFIES THE LOCATION AND ELEVATION OF EACH SOURCE ON EACH OCS FACILITY SHALL ALSO BE INCLUDED.

Please reference Attachment No. 11 "Air Quality" for specific required data on air emissions during the drilling operations. The drilling rig emission producing equipment is located within the rig hull and the average elevation of each source is 60 feet above the water surface. Schematic drawings of each source of emission producing equipment is attached.

IF PROJECTED EMISSIONS ARE BASED ON THE USE OF EMISSION CONTROL TECHNOLOGY, INFORMATION ON THE SOURCE, THE TECHNOLOGY APPLIED, THE REDUCTION ACHIEVED, AND THE PROPOSED MONITORING SYSTEM TO BE USED TO MEASURE EMISSIONS SHALL BE PROVIDED. THE BASIS FOR ALL CALCULATIONS SHALL BE PROVIDED.

Projected emissions calculations were not based on the use of emission control technology and emissions proposed in this plan do not exceed allowable limitations.

IF PROJECTED EMISSION OF ANY OF THE AIR POLLUTANTS IS GREATER THAN THE EMISSION EXEMPTION RATE AS DEFINED IN 30 CFR 250.45(d), THE INFORMATION REQUIRED BY 30 CFR 250.45(e) THROUGH (i) SHALL BE PROVIDED.

Emissions proposed in the plan will not exceed allowable limitations.

ENVIRONMENTAL INFORMATION, AS DISCUSSED IN SECTIONS I, II, AND IV, OF NTL NO. 86-09, PREPARED IN ACCORDANCE WITH GUIDELINES IN SECTIONS II.A, II.B, OR III OF THE ENCLOSURE TO NTL NO. 86-09. THIS ENVIRONMENTAL INFORMATION SHOULD BE PROVIDED IN A SEPARATE VOLUME. (PLEASE NOTE THAT THE TERM "ENVIRONMENTAL REPORT" AS USED IN NTL NO. 86-09. IS SYNONYMOUS WITH THE "ENVIRONMENTAL INFORMATION" REQUIRED BY THIS PARAGRAPH.)
The Environmental Report required by Section 307 of the Coastal Zone Management Act (CZMA) was previously forwarded.

A BRIEF DESCRIPTION OF THE ONSHORE BASE TO BE USED TO SUPPORT THE DEVELOPMENT ACTIVITIES INCLUDING INFORMATION AS TO WHETHER THE FACILITIES AT THE BASE ARE EXISTING, PROPOSED, OR ARE TO BE EXPANDED; A BRIEF DESCRIPTION OF SUPPORT VESSELS TO BE USED AND INFORMATION CONCERNING THEIR FREQUENCY OF TRAVEL; AND A MAP SHOWING THE LEASE RELATIVE TO THE SHORELINE WHICH DEPICTS PROPOSED TRANSPORTATION ROUTES. (THIS INFORMATION IS REQUIRED ONLY TO THE EXTENT THAT IT IS NOT PROVIDED WHEN COMPLYING WITH THE REQUIREMENTS OF THE ENVIRONMENTAL INFORMATION SECTION LISTED ABOVE.)

Operations will be conducted out of Amoco's base facility at Intracoastal City, Louisiana. No expansion of the existing facility is proposed. The base can be reached by state highway and is equipped with both a heliport and boat handling facility. Ample parking, sewage, water, and electricity are available. There are no known additional impacts that will result from the proposed activities.

Please reference Attachment No. 12, Location Map, which shows the location of Eugene Island Block 215 in relation to the shoreline and the proposed vessel transportation routes.

WHEN ANY WELL OR ASSOCIATED ANCHORING LOCATIONS ARE PROPOSED IN WATER DEPTHS GREATER THAN 400 METERS, AN ANALYSIS OF THE EVIDENCE AND CONSEQUENCES OF GEOLOGICAL PHENOMENA (SUCH AS HYDROCARBON CHARGED SEDIMENTS, SEISMIC WIPE-OUT ZONES, ANOMALOUS MOUNDS OR KNOILS, GAS VENTS, OR OIL SEEPS) THAT COULD SUPPORT CHEMOSYNTHETIC ORGANISMS.

As these proposed development operations are in water depths of less than 400 meters, this requirement does not apply.

DURING THE REVIEW OF A DOCD, THE SUBMITTAL OF COPIES OF CDP SEISMIC LINES NEAR PROPOSED WELL LOCATIONS MAY BE REQUIRED.

In accordance with Title 30 CFR Part 250.33(b)(1)(ii), full scale and appropriate, migrated Common Depth Point seismic lines were previously forwarded.

THE NAME, ADDRESS, AND TELEPHONE NUMBER OF AN AUTHORIZED REPRESENTATIVE OF THE LESSEE TO WHOM INQUIRIES MAY BE DIRECTED.

HARTY C. VAN, JR.
SENIOR PETROLEUM ENGINEERING ASSOCIATE
AMOCO PRODUCTION COMPANY
P. O. BOX 50879
NEW ORLEANS, LOUISIANA 70150
Eugene Island Block 215/208
OCS-G-00578 & 00576
Timing Schedule

Start Date: June 20, 1996

<table>
<thead>
<tr>
<th></th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P&A/Slot Recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricate E-Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caisson Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BEST AVAILABLE COPY

ATTACHMENT NO. 1
DRILLING VESSEL DESCRIPTION: The Phoenix III is a Bethlehem Steel Corporation design and construction and was built in accordance with the rules of the ABS and is classified as an A-1 Self Elevating Mobile Drilling Unit.

Columns: 3 - 11' diameter, 269' long.

Jacking system: Bethlehem yoke and pin with electro-hydraulic drive system with 6' working stroke.

DESIGN OPERATING CONDITIONS:

Maximum water depth (non hurricane) 200'
Maximum water depth (hurricane) 175'
Minimum water depth 12'
Drilling depth capacity 25,000'

MAX. OPERATING/ENVIRONMENTAL CONDITIONS:

Normal Drilling:
Variable deck loads (kips) 4,200
Drilling load (kips) 1,000
Wind speed (knots) 70
Wave height (ft.) 33
Hurricane Survival:
Variable load (kips) 3,200
Wind speed (knots) 100
Wave height (ft.) 60

RIG STORAGE CAPACITIES:

Pipe Racks: 3,000 sq. ft.
Inboard pipe racks (P/S) 407,000 lbs. each
Outboard pipe racks (P/S) 193,000 lbs. each
Weight Material & Cement:
Bulk mud 2,940 cu. ft.
Bulk cement 4,340 cu. ft.
Sack storage 3,000 sacks
Liquids:
Drilling mud 1,500 bbls.
Drill water 5,900 bbls.
Diesel fuel 2,000 bbls.
Potable water 1,000 bbls.

CLEARANCES (SKIDDED OUT):

Cantilever beams 60 ft. c/c
Bottom of cantilever beams to bottom of rig floor obstruction 18'4".

DRAWWORKS:

Continental Emisco Model C-3 double drum rated at 3000 hp driven by two EMO D-79 DC motors each rated at 1000 hp intermittent complete with catheads, 1-1/2 Lebus grooving, crown safety device and a Parmac V-295 hydraulomatic brake.
DERPICK:
Continental Emsco 20-R 147' high x 30' base rated at 1,000,000 pounds with 12 lines strung. Complete with adjustable air powered casing stabbing board, derrick climbing assistor, racking platform.

MUD PUMPS:
Two Continental Emsco FB 1600 triplex pumps each rated at 1600 hp and driven by 2 EMD D-79 DC motors complete with suction and discharge pulsation dampeners.

ENGINE GENERATOR UNITS:
Two EMD SR16 645 E1 rated at 2200 hp, each driving one EMD D32 DC generator and two EMD D79 DC generators with remote mounted radiators.

Two Detroit Diesel 12-V149T each driving a 800 kw Delco 480V AC generator.

One Detroit Diesel 8V-71 driving a 250 kW Delco 480 volt AC emergency generator.

ELECTRICAL DISTRIBUTION:
EMD SR-16 DC distribution system for drilling operations.

AC electrical distribution switchboard with engine-generator controls and motor control centers for ship board and drilling functions.

TCP DRIVE:
Varco TDS-3 complete with RBS-1 raised back-up system.

ROTARY:
Continental Emsco Model T-4950 with 49.5" opening driven by a EMD D-79 DC motor through a two speed Continental Emsco gear box complete with air brake, rpm generator and master bushing.

CROWN:
Continental Emsco RA 52-7 500 ton with 7-52' diameter 1.5' grooved sheaves.

TRAVELING BLOCK:
Continental Emsco RA52-6 500 ton with 6-52" diameter 1.5" grooved sheaves.

HOOK:
B.J. 5500 dynaplex 500 ton.

SWIVEL:
Continental Emsco LB-500 500 ton.

KELLY BUSHING:
Varco pin drive.

KELLY:
1 - 3.25 ID 5.25 hex.

KELLY SPINNER:
International air powered.

ROTARY HOSE:
Two 3.5' ID 7500 psi wp hoses.

SPINNING WRENCH:
Varco

UPPER KELLY VALVE:
10,000 psi wp Omsco.
INSIDE BOP: 10,000 psi wp Gray.
LOWER KELLY VALVE: Two 5,000 psi wp TIW.
STANDPIPE: Dual 5-9/16" OD X 4.25" ID 5,000 psi wp.
DRILL PIPE ELEVATORS: Two B.J. Type GG 350 ton.
DRILL PIPE SLIPS: Two Varco SD XL.
DRILL COLLAR ELEVATORS: One center latch 175 ton with 5" drill pipe taper.
DRILL COLLAR SLIPS:
1 - 5.5" to 7"
1 - 6.75" to 8.25"
ROTARY TONGS: BJ DB with 3-1/2" through 13-3/8 jaw capability.
DEADLINE ANCHOR: National EB for 1-1/2" drill line.
DRILL LINE: 1-1/2" EIPS
WIRELINE UNIT: Electro hydraulic 20,000' capacity .092 unit.
RIG FLOOR AIR HOIST: Two Ingersoll Rand K6UL 10,000# pull.
INSTRUMENTATION: Automatic drilling control
Weight indicator
Driller's console
Tong torque
Pump pressure
Pump strokes
Rotary RPM
Pit volume
Gain/loss
Mud flow
Air purge
6-pen recorder (ROP, wt., pump pressure, torque, rpm, strokes).

SHALE SHAKER:
Brandt Model DT dual tandem with a 1600 gpm flow rate.

FLOWLINE CLEANERS:
Two Derrick AWD shakers with a 900 gpm flow rate.

DESANDER:
Brandt Model SR-2, 2-cone, 12" diameter with a 1000 gpm flow rate.

DESILTER/MUD CLEANER:
Brandt Model SE-12, 12-cone, 4" diameter with a 800 gpm flow rate.

DEGASSER:
Brandt Model DG-10 with 1000 gpm flow rate.

DESANDER PUMP:
6 x 8 centrifugal driven by a 75 hp 1180 rpm AC motor.

DESILTER PUMP:
6 x 8 centrifugal driven by a 75 hp 1180 rpm AC motor.
MUD MIX AND TRANSFER PUMPS: Two 6 x 8 centrifugal pumps driven by a 75 hp 1800 rpm AC motor.

CHARGING PUMPS: Two 6 x 8 centrifugal pumps driven by a 75 hp 1180 rpm AC motor.

MUD PIT AGITATORS: Three Brandt each driven by a 25 hp AC motor.

MIXING HOPPERS: One Barite hopper and one chemical hopper.

TRIP TANK: 100 hbl. with 3 x 4 centrifugal pump driven by a 25 hp AC motor.

SURGE TANK: 1 - 75 cu. ft. barite tank.
1 - 75 cu. ft. cement tank.

BULK MUD: 4 - 735 cu. ft. each Halliburton tanks with a total capacity of 2940 cu. ft.

BULK CEMENT: 4 - 1085 cu. ft. each Halliburton tanks with a total capacity of 4340 cu. ft.

RIG AIR: 3 - Ingersoll Rand SSR-2000 screw compressors 350 SCFM each 125 psi utility pressure with air dryer.

BULK AIR: One low pressure Airdyne 40 psi utility pressure 445 SCFM driven by a 75 hp AC motor.

AUXILIARY PUMPS & EQUIPMENT: Two 3 x 4 centrifugal drill water pumps driven by 40 hp AC motors.

Two 3 x 4 centrifugal fire pumps driven by 50 hp AC motors.

Two 3 x 4 centrifugal bilge pumps driven by 10 hp AC motors.

Two gear type fuel transfer pumps driven by 5 hp AC motors.

One Alfa Laval MAB 2 hp fuel oil centrifuge.

Two Miller 400 amp welding machines.

Two waste oil gear pumps driven by 3 hp AC motors.

Two portable water pressure sets.

Two sanitary water pressure sets.

Two 40 hp AC 2 stage 6" submersible deep well pumps.

Red Fox 2000 sewage treatment unit.
QUARTERS:

52-Man air conditioned quarters complete with galley, mess hall, recreation room, hospital room, bath facilities, change room, laundry and storage rooms and office for toolpusher and operator's representatives.

HELIPORT:

60' x 70' designed for Sikorsky S-51 loading.

COMMUNICATION SYSTEM:

18 station Gai-tronics inter-rig system, VHF marine radio and cellular phone.

CRANES:

Two Link Belt 218A cranes with 90 feet of boom located port and starboard rated at 71,900# at a 20' radius or 52,900# at a 40' radius.

CEMENTING UNIT:

Halliburton twin 10,000 psi WP unit.

LIFE SAVING & FIRE PROTECTION:

Two 58-man Watercraft life boats.

Halon fire extinguisher system for both engine rooms.

All safety and fire protection equipment per USCG, ABS and MMS regulations.

WEATHER INSTRUMENTS:

Wind speed and direction unit.

Barometer.

BOP EQUIPMENT:

Koomay type 80, 7 station, 22 bottle, 3000 psi closing unit with two air pumps, a triplex electric driven pump and nitrogen backup system.

Koomay 7 station remote BOP closing unit at jacking control house.

3-1/16" 10,000 psi wp H2S trim choke manifold with 2 adjustable chokes and 1 Swaco automatic choke.

One 21-1/4" 2,000 psi wp annular.

One 21-1/4" 2000 psi wp diverter spool with 10" full opening hydraulic actuated valves.

One 13-5/8" 5000 psi wp Shaffer annular H2S trim.

One 13-5/8" 10,000 psi wp Shaffer double ram H2S trim.

One 13-5/8" 10,000 psi wp Shaffer single ram H2S trim.

One 2-1/16" 10,000 psi HCR valve.

One 2-1/16" 10,000 psi gate valve.

One 3-1/16" 10,000 psi HCR valve.

One 3-1/16" 10,000 psi gate valve.

1" 3,000 psi flexible BOP closing lines fire retardant and with stainless steel outer covering.

5
TUBULARS:

6,000' 5" 19.5#/ft. Grade E, Range I1, with 5" XH connections, 6-3/8 OD tool joints.

9,000' 5" 19.5#/ft. Grade G, Range II, with 5" XH connections, 6-3/8" OD tool joints.

900' 5" 53.6#/ft. spiral-wate with 5" XH connections, 6-3/8" OD tool joints.

Nine 7-3/4" OD x 2-13/16" ID 30' spiral drill collars with 6-5/8" API reg. connections.

Nine 6-1/2” OD x 2-13/16" ID 30' spiral drill collars with 5” H-90 connections.

For Contractor furnished tubulars.

FISHING TOOLS:

Taper tap and overshots for Contractor furnished tubulars.
MSRC Gulf Region’s Major Equipment

<table>
<thead>
<tr>
<th>Location</th>
<th>Skimmers</th>
<th>USCC Derived Barrel Capacity/ per day</th>
<th>Boom</th>
<th>Barges</th>
<th>Shallow Water Workboats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Aransas, TX</td>
<td>1 Aard-Vac</td>
<td>3,840</td>
<td>6,600 ft. Sea Sentry II</td>
<td>1 Self propelled and 3 shuttle barges</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 Vikoma 3 weir</td>
<td>5,664</td>
<td>1,000 ft. Slickbar</td>
<td>One 40,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 GT-185</td>
<td>2,736</td>
<td>200 ft. Texas Boom</td>
<td>One 57,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Transrec 350 on the response vessel</td>
<td>10,560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galveston, TX</td>
<td>Walosep 4</td>
<td>3,024</td>
<td>3,960 ft. Sea Sentry II</td>
<td>1 Self propelled and 3 shuttle barges</td>
<td>16 (500 bbl) storage bladders 1 (2,000 bbl) storage bladder</td>
</tr>
<tr>
<td></td>
<td>1 GT-185</td>
<td>1,368</td>
<td>3,960 ft. Sea Sentry II</td>
<td>One 45,000 barrel offshore barge</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 Transrec 350 on the response vessel</td>
<td>10,560</td>
<td>1,000 ft. Slickbar</td>
<td>One (3,000 bbl) storage bladder</td>
<td></td>
</tr>
<tr>
<td>Lake Charles, LA</td>
<td>1 GT-185</td>
<td>1,368</td>
<td>10,560 ft. Sea Sentry II</td>
<td>1 Self propelled and 3 shuttle barges</td>
<td>One 40,000 barrel offshore barge</td>
</tr>
<tr>
<td></td>
<td>1 Desmi</td>
<td>3,024</td>
<td>10,560 ft. Sea Sentry II</td>
<td>1 Self propelled and 3 shuttle barges</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 WP1</td>
<td>4,224</td>
<td>1,000 ft. Slickbar</td>
<td>One 30,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Transrec 350 on the response vessel</td>
<td>10,560</td>
<td>200 ft. Texas Boom</td>
<td>One 30,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td>Fort Jackson, LA</td>
<td>Walosep 4</td>
<td>3,024</td>
<td>5,280 ft. Sea Sentry II</td>
<td>1 self propelled and 3 shuttle barges</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 Desmi</td>
<td>3,024</td>
<td>5,280 ft. Sea Sentry II</td>
<td>1 self propelled and 3 shuttle barges</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 Vikoma 3 weir</td>
<td>5,664</td>
<td>1,000 ft. Slickbar</td>
<td>One 40,000 barrel offshore barge</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 GT-185</td>
<td>2,736</td>
<td>200 ft. Texas Boom</td>
<td>One 40,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td>Pascagoula, MS</td>
<td>Aard-Vac</td>
<td>3,840</td>
<td>3,960 ft. Sea Sentry II</td>
<td>1 self propelled and 3 shuttle barges</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 GT-185</td>
<td>2,736</td>
<td>8,000 ft. (Slickbar)</td>
<td>9 Workboats 3 self propelled barges 9 shuttle barges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Transrec 350 on the response vessel</td>
<td>10,560</td>
<td>7,200 ft. (Texas boom)</td>
<td>One 40,000 barrel offshore barge</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20 Skimmers</td>
<td>83,776 barrels/day</td>
<td>50,360 feet</td>
<td>3 self propelled barges, 9 shuttle barges 18 towable storage bladders 4 large storage barges</td>
<td></td>
</tr>
</tbody>
</table>
On March 24, 1989, an oil tanker struck a reef in Alaska’s Prince William Sound, causing the biggest oil spill in the history of the United States. While thousands worked to clean up the spill, a small task force, organized under the auspices of the American Petroleum Institute, took a hard look at existing resources for responding to catastrophic oil spills — its startling conclusion: the capability did not exist, either in industry or government.

As a result 20 oil companies created the Petroleum Industry Response Organization (PIRO). In August 1990, the oil companies created two new organizations: the Marine Spill Response Corporation (MSRC) and the Marine Preservation Association (MPA). MSRC, which succeeds PIRO, is an independent non-profit oil spill response organization. MPA, is a non-profit organization which includes about 70 oil companies and shippers and receivers of oil. MPA provides grant funding to MSRC, but does not control MSRC operations.

Geographic Coverage
MSRC is headquartered in Washington, D.C., and its five regional response centers are located in Edison, New Jersey; Miami, Florida; Lake Charles, Louisiana; Port Hueneme, California; and Everett, Washington. Each region has three to six preposition sites (23 nationwide) where equipment and most often vessels and personnel are strategically located. The regional centers and preposition sites were located based on proximity to the sea, air and highway transport, and the potential for rapid response based on oil transportation patterns. MSRC provides a “best-effort” response to large spills of persistent oil (i.e., oils that do not evaporate or degrade quickly) in U.S. coastal and tidal waters (out to the limits of the U.S. Exclusive Economic Zone (EEZ)).

MSRC’s Gulf Region
MSRC’s Gulf Region covers coastal areas from the Mexican border to the Fenholloway River, east of St. Marks, Florida. The Gulf Region has four of MSRC’s 16 Oil Spill Response Vessels (OSRVs). These 210-foot response ships are stationed near high volume oil ports and are designed to operate offshore and in deep water channels. “Gulf Coast Responder” is stationed at the regional headquarters in Lake Charles, Louisiana and “Louisiana Responder” is located at Fort Jackson, Louisiana. Additional response vessels are stationed at two of Texas’ major crude oil ports; Galveston ("Texas Responder") and Port Aransas, near Corpus Christi (“Lone Star Responder”). MSRC in the Gulf also has a preposition site at Pascagoula, Mississippi. Spill response equipment is stored at the regional center and at each preposition site, as well as onboard each OSRV. Prepositioned equipment includes four large offshore oil storage barges (each of 40,000 or more barrel capacity), 16 towable storage bladders, more than nine miles of various oil containment boom, three Shuttle Barge Systems, (self-propelled and storage shuttle barges for shallow water oil recovery), and a variety of skimmers, pumps, and boats. MSRC’s Gulf Region employs a total of 36 personnel, including 11 assigned to “Central Watch”, where an authorized representative from an MPA member company may call to activate an MSRC spill response.

Spill Response and Cleanup
On August 18, 1993 MSRC became “operational” — on call for spill response. Our goal is to have ships underway, and equipment and people mobilized within two hours of notification, and to be on scene quickly from our strategically placed pre-position sites. When the size of an oil spill dictates, we have plans to “cascade” people and equipment to or from any of the four other MSRC regions. The main line of attack against major oil spills in deep water is our fleet of 210-foot oil spill response vessels. In shallower waters, MSRC’s Shuttle Barge System, MSRC Skimmers, “vessels of opportunity”, and local contractors and co-ops would provide a significant capability. MSRC has planned for maximum effectiveness with quick response; comprehensive equipment inventory; strategically located deployment sites; sophisticated mobile command, control, and communications; mobilization of support contractors and co-ops; and cascading of key resources.

Relation to MPA
MPA members pay annual dues, based on the volume of oil they transported in the area covered by MSRC in the previous year. MPA provides grants to MSRC and these funds are used to pay MSRC’s operating, capital, and research and development costs. If an MPA member is the “Responsible Party” for a spill, MSRC stands ready to respond and it is the “Responsible Party”, not MSRC or the other members of MPA, who will pay for the cleanup.

Relation to Coast Guard
When called into service, MSRC operates under the direction of its client MPA member, which in turn would coordinate response efforts with the Federal On Scene Coordinator – the Coast Guard Captain of the Port in the area affected by an oil spill. Under some conditions MSRC might be called out by the Federal On Scene Coordinator.

Relation to Local Response Organizations
MSRC is not intended to compete with or replace existing oil spill cooperatives and independent response contractors. These local entities constitute an important spill response resource. MSRC will respond when this infrastructure does not have sufficient resources to respond to a large spill. MSRC has contracted and trained with local contractors — so as to mount a timely and coordinated response to a major oil spill.
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>Amoco</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>Eugene Island</td>
</tr>
<tr>
<td>BLOCK</td>
<td>215/208</td>
</tr>
<tr>
<td>LEASE</td>
<td>OCS-G-00578 & 00576</td>
</tr>
<tr>
<td>PLATFORM</td>
<td>B & C</td>
</tr>
<tr>
<td>WELL</td>
<td></td>
</tr>
<tr>
<td>LATITUDE</td>
<td>28deg 38' 3.05"</td>
</tr>
<tr>
<td></td>
<td>28deg 38' 56.87"</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>91deg 29' 19.58"</td>
</tr>
<tr>
<td></td>
<td>91deg 29' 42.33"</td>
</tr>
<tr>
<td>COMPANY CONTACT</td>
<td>Danny Young</td>
</tr>
<tr>
<td>TELEPHONE NO.</td>
<td>586-6670</td>
</tr>
<tr>
<td>REMARKS</td>
<td>Production associated with the wells contained in this plan will not require the installation of additional pipelines, platforms, or production equipment. In lieu of any new installations, production will be processed through existing production equipment and pipelines. The incremental emissions associated with this additional production have been included in this plan.</td>
</tr>
<tr>
<td>COMPANY</td>
<td>AREA</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>EQUIPMENT</th>
<th>MAX. FUEL</th>
<th>ACT. FUEL</th>
<th>RUN TIME</th>
<th>POUNDS PER HOUR</th>
<th>TONS PER YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Engines</td>
<td>HP</td>
<td>GAL/HR</td>
<td>GAL/D</td>
<td>Burners</td>
<td>MMBTU/HR</td>
<td>SCF/HR</td>
</tr>
<tr>
<td>PRIME MOVER=600hp diesel</td>
<td>2200</td>
<td>106.26</td>
<td>2550.24</td>
<td>24</td>
<td>67</td>
<td>1.18</td>
</tr>
<tr>
<td>PRIME MOVER=600hp diesel</td>
<td>1050</td>
<td>50.715</td>
<td>1217.16</td>
<td>24</td>
<td>67</td>
<td>0.59</td>
</tr>
<tr>
<td>PRIME MOVER=600hp diesel</td>
<td>1050</td>
<td>50.715</td>
<td>1217.16</td>
<td>24</td>
<td>67</td>
<td>0.56</td>
</tr>
<tr>
<td>AUXILIARY EQUIP=300hp diesel</td>
<td>960</td>
<td>46.368</td>
<td>1112.83</td>
<td>24</td>
<td>10</td>
<td>2.11</td>
</tr>
<tr>
<td>AUXILIARY EQUIP=300hp diesel</td>
<td>540</td>
<td>29.002</td>
<td>625.97</td>
<td>3</td>
<td>87</td>
<td>1.19</td>
</tr>
<tr>
<td>PIPELINE INSTALLATION</td>
<td>350</td>
<td>16.906</td>
<td>405.72</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
</tr>
<tr>
<td>PIPELINE LAY BARGE diesel</td>
<td>3600</td>
<td>173.86</td>
<td>4173.12</td>
<td>7</td>
<td>67</td>
<td>1.90</td>
</tr>
<tr>
<td>PIPELINE LAY BARGE diesel</td>
<td>3600</td>
<td>173.86</td>
<td>4173.12</td>
<td>6</td>
<td>67</td>
<td>1.90</td>
</tr>
<tr>
<td>PIPELINE LAY BARGE diesel</td>
<td>12600</td>
<td>508.58</td>
<td>14605.92</td>
<td>24</td>
<td>4</td>
<td>6.66</td>
</tr>
<tr>
<td>FACILITY INSTALLATION</td>
<td>200</td>
<td>5.60</td>
<td>231.84</td>
<td>24</td>
<td>3</td>
<td>0.11</td>
</tr>
<tr>
<td>OIL BURN</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>TANK</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>PROCESS VENT</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>GAUGE</td>
<td>50.0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>DRILLING</td>
<td>83333</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>WELL TEST</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1998 YEAR TOTAL

<table>
<thead>
<tr>
<th>EXEMPTION CALCULATION</th>
<th>DISTANCE FROM LAND IN MILES</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1498.60</td>
</tr>
</tbody>
</table>

BEST AVAILABLE COPY
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>AREA</th>
<th>BLOCK</th>
<th>LEASE</th>
<th>PLATFORM</th>
<th>WELL</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>CONTACT</th>
<th>PHONE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>110221</td>
<td>EGS-2</td>
<td>962741</td>
<td>8 & 9</td>
<td>32°34'26"</td>
<td>106°30'50"</td>
<td>Carly Young</td>
<td></td>
<td>968-5810</td>
</tr>
</tbody>
</table>

OPERATIONS

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAX. FUEL</th>
<th>ACT. FUEL</th>
<th>RUN TIME</th>
<th>POUNDS PER HOUR</th>
<th>TONS PER YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel Engines</th>
<th>HP</th>
<th>GAL/HR</th>
<th>GAL/D</th>
<th>HP</th>
<th>SCFF/HR</th>
<th>SCFF/D</th>
<th>H/D</th>
<th>DAYS</th>
<th>TSP</th>
<th>SOx</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>TSP</th>
<th>SOx</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIME MOVER=600hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>PRIME MOVER=500hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>AUXILIARY EQUIP=600hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>VESSELS=600hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>PIPELINE LAY BARGE diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>SUPPORT VESSEL diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>PIPELINE BURY BARGE diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>SUPPORT VESSEL diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>DERRICK BARGE diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MATERIAL TUG diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RECIP.<500hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RECIP.?500hp diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>SUPPORT VESSEL diesel</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>TURBINE nat gas</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RECIP.2 cycle lean nat gas</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RECIP.4 cycle lean nat gas</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RECIP.4 cycle rich nat gas</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>BURNER nat gas</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

MISC

<table>
<thead>
<tr>
<th>TANK-</th>
<th>1800</th>
<th>SCFF/HR</th>
<th>COUNT</th>
<th>1997 YEAR TOTAL</th>
<th>EXEMPTION CALCULATION</th>
<th>DISTANCE FROM LAND IN MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPD</td>
<td>24</td>
<td>365</td>
<td>2.25</td>
<td>0.00</td>
<td>1498.50</td>
<td>43564.36</td>
</tr>
<tr>
<td>150</td>
<td>365</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>1498.50</td>
<td>43564.36</td>
</tr>
<tr>
<td>150</td>
<td>365</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1498.50</td>
<td>43564.36</td>
</tr>
<tr>
<td>150</td>
<td>365</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1498.50</td>
<td>43564.36</td>
</tr>
<tr>
<td>Year</td>
<td>TSP</td>
<td>SOx</td>
<td>NOx</td>
<td>HC</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.15</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>4.48</td>
<td>25.84</td>
<td>193.43</td>
<td>10.25</td>
<td>42.19</td>
<td></td>
</tr>
<tr>
<td>Allowable</td>
<td>1498.50</td>
<td>1498.50</td>
<td>1498.50</td>
<td>1498.50</td>
<td>43564.36</td>
<td></td>
</tr>
</tbody>
</table>