In Reply Refer To: MS 5231

March 17, 1995

Shell Offshore Inc.
Attention: Ms. D. J. Bilbo
Post Office Box 61933
New Orleans, Louisiana 70161-1933

Gentlemen:

Reference is made to the following plan received March 3, 1995:

Type Plan - Unit Development Operations Coordination Document
Leases - OCS 0742, 0743, and 0744
Blocks - 136, 160, and 161
Area - High Island
Activities Proposed - Platform JA and six wells

In accordance with 30 CFR 250.34, this plan is hereby deemed submitted and is now being considered for approval.

Your control number is S-3588 and should be referenced in your communication and correspondence concerning this plan.

Sincerely,

Donald C. Howard
Regional Supervisor
Field Operations

bcc: Lease OCS 0742 POD File (MS 5032)
    Lease OCS 0743 POD File (MS 5032)
    Lease OCS 0744 POD File (MS 5032)
    (MS 5034 w/public info. copy of the plan
    and accomp. info.)

MToibert:cic:03/13/95:DOCDCOM

NOTED - SCHEXNAILDRE
MAR 3 1995

Mr. Donald C. Howard
Regional Supervisor
Field Operations
MS 5231
Minerals Management Service
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394

Dear Mr. Howard:

SUBJECT: SUPPLEMENTAL DEVELOPMENT OPERATIONS
COORDINATION DOCUMENT (DOCD)
HIGH ISLAND BLOCKS 135, 136, 160 AND 161
OCS-0741, 0742, 0743 AND 0744
OFFSHORE TEXAS
UNIT AGREEMENT NO. 14-08-0001-9566

Shell Offshore Inc. (SOI), E&P - Shelf Contracts Department, is hereby submitting, for your approval, this Supplemental DOCD for the captioned lease. We plan to commence operations on or about April 15, 1995.

We have included, for your review, various attachments which contain the necessary supporting data for our intended operations. These attachments are:

1) General Information and Sequence of Activities;
2) Vicinity Map, Transportation Routes and Onshore Support Base Description;
3) Surface Location and Bathymetry Map;
4) Drilling Rig Description - Jack-up Rig "Marvin Winters" or Similar Rig;
5) Mud and Completion Fluid Components and Additives;
6) Oil Spill Contingency Plan;
7) Air Emissions Data;
8) Waste and Pollutants Discharges;
9) General Platform Design;
*10) Botton Hole Locations and Map;
*11) Structure Map;
*12) Geologic Cross Sections; and
*13) Description of Activities and H2S Statement.

*These attachments contain proprietary data and as such are free from disclosure under the "Freedom of Information Act".

Please note that the Site Specific - Shallow Drilling Hazards Report and the Archaeological and Hazards Study are currently being prepared. These documents will be sent to your office as soon as they are received by SOI.
Should you require additional information, please contact the undersigned at (504) 588-6242.

Yours very truly,

Diana J. Bilbo
Lease Maintenance Coordinator

DJB:CBK

Attachments
GENERAL INFORMATION AND SEQUENCE OF ACTIVITIES
SUPPLEMENTAL DCCD
HIGH ISLAND BLOCKS 136, 150 AND 161
OCS 0742, 0743, AND 0744
OFFSHORE TEXAS

GENERAL INFORMATION AND SCHEDULE OF ACTIVITIES
SoI is herein requesting approval for the installation of a four pile, six slot structure with deck on High Island Block 160. We are also requesting approval for six wells to be drilled from this new structure along with flowline installation. Structure installation is scheduled to commence on or about April 15, 1995. Drilling operations should commence on or about May 1, 1995. Drilling each well is expected to require approximately 21 days. Completion is expected to require approximately 9 days for each well. The anticipated life of reserves for the wells is 10 years.

STRUCTURE INSTALLATION
APRIL 15, 1995

<table>
<thead>
<tr>
<th>WELL LOC.</th>
<th>START DATE</th>
<th>END DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;AA&quot;</td>
<td>MAY 01, 1995</td>
<td>MAY 21, 1995</td>
</tr>
<tr>
<td>&quot;BB&quot;</td>
<td>MAY 23, 1995</td>
<td>JUNE 12, 1995</td>
</tr>
<tr>
<td>&quot;CC&quot;</td>
<td>JUNE 14, 1995</td>
<td>JULY 04, 1995</td>
</tr>
<tr>
<td>&quot;DD&quot;</td>
<td>JULY 06, 1995</td>
<td>JULY 26, 1995</td>
</tr>
<tr>
<td>&quot;EE&quot;</td>
<td>JULY 28, 1995</td>
<td>AUGUST 17, 1995</td>
</tr>
<tr>
<td>&quot;FF&quot;</td>
<td>AUGUST 19, 1995</td>
<td>SEPTEMBER 8, 1995</td>
</tr>
</tbody>
</table>

FLOWLINE INSTALLATION
SEPTEMBER 15, 1995

<table>
<thead>
<tr>
<th>WELL LOC.</th>
<th>START DATE</th>
<th>END DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;AA&quot;</td>
<td>OCTOBER 01, 1995</td>
<td>OCTOBER 09, 1995</td>
</tr>
<tr>
<td>&quot;BB&quot;</td>
<td>OCTOBER 11, 1995</td>
<td>OCTOBER 19, 1995</td>
</tr>
<tr>
<td>&quot;CC&quot;</td>
<td>OCTOBER 21, 1995</td>
<td>OCTOBER 29, 1995</td>
</tr>
<tr>
<td>&quot;DD&quot;</td>
<td>OCTOBER 31, 1995</td>
<td>NOVEMBER 08, 1995</td>
</tr>
<tr>
<td>&quot;EE&quot;</td>
<td>NOVEMBER 10, 1995</td>
<td>NOVEMBER 19, 1995</td>
</tr>
<tr>
<td>&quot;FF&quot;</td>
<td>NOVEMBER 21, 1995</td>
<td>NOVEMBER 29, 1995</td>
</tr>
</tbody>
</table>

FIRST PRODUCTION
NOVEMBER 01, 1995

LEASE STIPULATION STATEMENT
High Island Block 160 is not part of any Biological Sensitive Area, or Shipping Fairway. Shell Offshore Inc. will comply with all items stated in Stipulation No. 1—Protection of Archaeological Resources.

DRILLING RIG SAFETY FEATURES
The jack-up rig we plan to use will comply with all of the regulations of the American Bureau of Shipping (ABS), International Maritime Organization (IMO), and the United States Coast Guard (USCG).
POLLUTION-PREVENTION FEATURES
All waste, except that authorized for discharge, is collected and transported to shore for disposal. Sewage is treated prior to being dumped overboard.

DRILLING OPERATIONS
All drilling operations will be conducted under the provisions of 30 CFR, Part 250, Subpart D, and other applicable regulations and notices, including those regarding the avoidance of potential drilling hazards and safety and pollution prevention control.

WELL ABANDONMENT
The wells will be drilled, evaluated, and either temporarily or permanently abandoned in accordance with 30 CFR, Part 250, Subpart G. If further development, or production activities are to be undertaken thereafter, appropriate plans will be submitted.

AREA WIDE BOND RIDER
Refer to SOI's Bond Rider No. 5206292 which totals $3,000,000 and complies with Letter to Lessees and Operators dated November 5, 1993. (30 CFR Part 256)

OIL SPILL CONTINGENCY PLAN
SOI's Oil Spill Contingency Plan has been approved by the MMS.
<table>
<thead>
<tr>
<th>SURFACE LOCATION</th>
<th>X</th>
<th>Y</th>
<th>FNL</th>
<th>FEL</th>
<th>WATER DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATFORM JA</td>
<td>3,552,800'</td>
<td>544,500'</td>
<td>1,980'</td>
<td>2,196'</td>
<td>50'</td>
</tr>
</tbody>
</table>
"MARVIN WINTERS"

GENERAL SPECIFICATIONS

A. Type: Bethlehem Model JU250MC Mat Supported Jackup, with three (3) 13' diameter legs, outfitted for 25,000' drilling in a maximum of 250' of water. Approved by the American Bureau of Shipping as an (Maltese Cross) A-1 Self-Elevating Drilling Unit. Built under the United States Coast Guard rules for Mobile Offshore Drilling Units.

B. Builder: Bethlehem Steel Corporation, Beaumont, Texas, 1982

C. Elevating System: Bethlehem design hydraulic pin and box elevating system.

D. Principal Characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Overall</td>
<td>166'-0&quot;</td>
</tr>
<tr>
<td>Breadth Overall</td>
<td>145'-0&quot;</td>
</tr>
<tr>
<td>Depth of Hull</td>
<td>20'-0&quot;</td>
</tr>
<tr>
<td>Length of Legs (Measured to Top of Mud Skirt)</td>
<td>321'-0&quot;</td>
</tr>
<tr>
<td>Mud Skirt</td>
<td>2'-0&quot;</td>
</tr>
<tr>
<td>Depth of Mat (Excluding Mud Skirt)</td>
<td>11'-0&quot;</td>
</tr>
<tr>
<td>Length of Mat</td>
<td>236'-0&quot;</td>
</tr>
<tr>
<td>Breadth of Mat</td>
<td>205'-0&quot;</td>
</tr>
<tr>
<td>Minimum Separation of Mat &amp; Hull</td>
<td>3'-0&quot;</td>
</tr>
<tr>
<td>Projection of Mat Below Hull</td>
<td>16'-0&quot;</td>
</tr>
<tr>
<td>Centerline of Fwd Leg to Centerline of Aft Legs</td>
<td>145'-0&quot;</td>
</tr>
<tr>
<td>Center to Center of Aft Legs</td>
<td>120'-0&quot;</td>
</tr>
</tbody>
</table>

E. Design Operating Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Non-Hurricane</th>
<th>Hurricane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth</td>
<td>250 ft.</td>
<td>225 ft.</td>
</tr>
<tr>
<td>Maximum Wave Height</td>
<td>33 ft.</td>
<td>36 ft.</td>
</tr>
<tr>
<td>Corresponding Wave Period</td>
<td>10 sec.</td>
<td>14 sec.</td>
</tr>
<tr>
<td>Maximum Wind Velocity (One Minute Average)</td>
<td>70 kn.</td>
<td>70 kn.</td>
</tr>
<tr>
<td>Air Gap</td>
<td>25 ft.</td>
<td>50 ft.</td>
</tr>
</tbody>
</table>

Minimum Operating Water Depth: 25 ft.

Variable Loads: (Inclusive of Hook, Rotary & Setback Loads)

<table>
<thead>
<tr>
<th>Load</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Drilling</td>
<td>4,500 kips</td>
</tr>
<tr>
<td>Floating</td>
<td>3,726 kips</td>
</tr>
<tr>
<td>Elevated Storm</td>
<td>3,500 kips</td>
</tr>
<tr>
<td>Jacking Condition</td>
<td>2,500 kips</td>
</tr>
</tbody>
</table>

ATTACHMENT 4
### WEIGHT MATERIALS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard barite</td>
<td>N-1 BAR</td>
</tr>
<tr>
<td>High density hematite</td>
<td>FER-EX</td>
</tr>
<tr>
<td>Acid Soluble-low density calcium carbonate</td>
<td>LC-WATE</td>
</tr>
</tbody>
</table>

### VISCOSIFIERS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyoming bentonite</td>
<td>M-1 GEL</td>
</tr>
<tr>
<td>Beleached bentonite</td>
<td>GEL SUPREME</td>
</tr>
<tr>
<td>Attapulgite</td>
<td>SALT GEL</td>
</tr>
<tr>
<td>Bentonite extender</td>
<td>GLEX</td>
</tr>
<tr>
<td>Keltium gum biopolymer</td>
<td>XC-POLYMER</td>
</tr>
<tr>
<td>PIPPA</td>
<td>POLYPLUS RD</td>
</tr>
<tr>
<td>Hydroxyethyl cellulose</td>
<td>HEC</td>
</tr>
</tbody>
</table>

### DISPERSANTS & DEPOLLENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite</td>
<td>TANNATHIN</td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>K-17</td>
</tr>
<tr>
<td>Chrome nitrate</td>
<td>XP-20</td>
</tr>
<tr>
<td>Chrome lignosulfate</td>
<td>SPERSENE VC-10</td>
</tr>
<tr>
<td>Chrome-free lignosulfate</td>
<td>SPERSENE CF</td>
</tr>
<tr>
<td>Calcium lignosulfonate</td>
<td>Sitan</td>
</tr>
<tr>
<td>Tannin extract blend</td>
<td>QUEBRADIL</td>
</tr>
<tr>
<td>Polyacrylate-low molecular weight</td>
<td>TACKLE</td>
</tr>
<tr>
<td>Modified chrome tannin</td>
<td>Dacron</td>
</tr>
<tr>
<td>Modified chrome-free tannin</td>
<td>Dacron CF</td>
</tr>
<tr>
<td>Sodium tetraphosphate</td>
<td>PHOS</td>
</tr>
<tr>
<td>Sodium pyrophosphate</td>
<td>SAPP</td>
</tr>
</tbody>
</table>

### CORROSION INHIBITORS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water dispersible blended amine</td>
<td>CONDOUR 101</td>
</tr>
<tr>
<td>Permanant film forming amine</td>
<td>CONDOUR 202</td>
</tr>
<tr>
<td>Brine soluble blended amine</td>
<td>CONDOUR 203A</td>
</tr>
<tr>
<td>Modified organic inhibitor</td>
<td>CONDOUR 404</td>
</tr>
<tr>
<td>Scale inhibitor</td>
<td>SI-1000</td>
</tr>
<tr>
<td>Sulfide scavenger</td>
<td>SULF-X</td>
</tr>
<tr>
<td>Boric acid</td>
<td>BACANIL</td>
</tr>
<tr>
<td>Oxygen scavenger</td>
<td>Oxygen Scavenger</td>
</tr>
</tbody>
</table>

### LUBRICANTS, EMULSIFIERS, SURFACTANTS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-temperature lubricant</td>
<td>LUBE-167</td>
</tr>
<tr>
<td>Graphite</td>
<td>Graphite</td>
</tr>
<tr>
<td>Drilling detergent</td>
<td>DD</td>
</tr>
<tr>
<td>Non-ionic surfactant</td>
<td>DME</td>
</tr>
<tr>
<td>Non-ionic emulsifier</td>
<td>DME</td>
</tr>
<tr>
<td>Blend of ionic surfactants</td>
<td>SALVEX</td>
</tr>
<tr>
<td>Non-ionic surfactant</td>
<td>KME</td>
</tr>
<tr>
<td>Gilsonite copler</td>
<td>Stock pipe solution PIPELAX ENV PIPELAX W</td>
</tr>
<tr>
<td>Reformer</td>
<td>UREFOAM-X</td>
</tr>
</tbody>
</table>

### FILTRATION CONTROL AGENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic polymer</td>
<td>RESINEX</td>
</tr>
<tr>
<td>Polycondensed starch</td>
<td>MY-30-J1L</td>
</tr>
<tr>
<td>Modified polyzincinate</td>
<td>POLY-SAL</td>
</tr>
<tr>
<td>Sodium carbomethyl cellulose</td>
<td>CMC</td>
</tr>
<tr>
<td>Polyaspartic cellulose</td>
<td>POLY PAC</td>
</tr>
<tr>
<td>Sodium polyacrylate</td>
<td>SP-101</td>
</tr>
<tr>
<td>Starch preservation</td>
<td>BACANIL</td>
</tr>
</tbody>
</table>

### COMMERICAL CHEMICALS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium hydroxide - NaOH</td>
<td>Caustic Soda</td>
</tr>
<tr>
<td>Sodium bicarbonate-NaHCO₃</td>
<td>Sodium Bicarbonate</td>
</tr>
<tr>
<td>Sodium carbonate-Na₂CO₃</td>
<td>Soda Ash</td>
</tr>
<tr>
<td>Sodium chloride-NaCl</td>
<td>Salt</td>
</tr>
<tr>
<td>Calcium hydroxide-Ca(OH)₂</td>
<td>Lime</td>
</tr>
<tr>
<td>Calcium oxide-CaO</td>
<td>Hardness</td>
</tr>
<tr>
<td>Calcium sulfate</td>
<td>Gypsum</td>
</tr>
<tr>
<td>Calcium chloride-CaCl₂</td>
<td>Potassium Chloride</td>
</tr>
<tr>
<td>Calcium chloride-CaCl₂</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>Sodium-CaCl₂</td>
<td>Salt</td>
</tr>
</tbody>
</table>

### SHALE StABILIZERs

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyacrylate-high molecular weight</td>
<td>POLY-PLUS</td>
</tr>
<tr>
<td>Polymer-surfactant blend</td>
<td>SHALE-CHEK</td>
</tr>
<tr>
<td>Blown asphalt</td>
<td>STABILISOLE</td>
</tr>
<tr>
<td>Sulfurized asphalt</td>
<td>Soltix</td>
</tr>
</tbody>
</table>

### LOST CIRCULATION MATERIALS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Shells</td>
<td>NUT PLUG</td>
</tr>
<tr>
<td>Mica</td>
<td>MICA</td>
</tr>
<tr>
<td>Cellulose</td>
<td>MIX II</td>
</tr>
<tr>
<td>Blended LCM</td>
<td>Kwik Seal</td>
</tr>
<tr>
<td>Blended fluid loss LCM</td>
<td>Dissol M</td>
</tr>
<tr>
<td>Granular plastic chips</td>
<td>Phase seal</td>
</tr>
</tbody>
</table>

### SIZED SALT ADDITIVES

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer Blend</td>
<td>Thixap Plus</td>
</tr>
<tr>
<td>Starch</td>
<td>FI-1 Plus</td>
</tr>
<tr>
<td>Salt</td>
<td>Wetasol A</td>
</tr>
<tr>
<td>Mg Oxide</td>
<td>PH Buffer</td>
</tr>
<tr>
<td>Salt</td>
<td>Diug-eol</td>
</tr>
<tr>
<td>Mg Chloride</td>
<td>CM-7H</td>
</tr>
<tr>
<td>Glycol</td>
<td>VE-1000</td>
</tr>
</tbody>
</table>

### OIL MUD PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomite oil mud system</td>
<td>VERSADRIL</td>
</tr>
<tr>
<td>Mineral Oil mud system</td>
<td>VERSAFLON</td>
</tr>
<tr>
<td>Bentonite fluid</td>
<td>VERSAMUL</td>
</tr>
<tr>
<td>Organophilic clay</td>
<td>VE-88</td>
</tr>
<tr>
<td>Primary emulsifier</td>
<td>VERSACAT</td>
</tr>
<tr>
<td>Drilling mud</td>
<td>VERSABER</td>
</tr>
<tr>
<td>Fluid loss control agent</td>
<td>VERSATROL</td>
</tr>
<tr>
<td>Oil mud thiner</td>
<td>VERSATHIN</td>
</tr>
<tr>
<td>Foams</td>
<td>VERSAMOD</td>
</tr>
<tr>
<td>Surfactant cleaner</td>
<td>VERSA-HLP</td>
</tr>
</tbody>
</table>

### SYNTHETIC MUD PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>MI Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic mud system</td>
<td>NOVOIRIL</td>
</tr>
<tr>
<td>Bore fluid</td>
<td>NOVAMOD</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>NOVAMUL</td>
</tr>
<tr>
<td>Synthetic oil</td>
<td>NOVASOL</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>NOVATHIN</td>
</tr>
<tr>
<td>Blended bore oil</td>
<td>NOVAVET</td>
</tr>
<tr>
<td>Product Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AXYFLOX</td>
<td>Acidic/Alkaline</td>
</tr>
<tr>
<td>ACDR-6</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>AYTFL-6</td>
<td>Surfactant</td>
</tr>
<tr>
<td>AQUEL</td>
<td>Visco/Viscosity index</td>
</tr>
<tr>
<td>AQUEL GOLD SEAL</td>
<td>Visco/Viscosity index</td>
</tr>
<tr>
<td>BARACCORD 704</td>
<td>Fibre Spent</td>
</tr>
<tr>
<td>BARACORD 114</td>
<td>Fibre Spent</td>
</tr>
<tr>
<td>BARACORD 5</td>
<td>Fibre Spent</td>
</tr>
<tr>
<td>BARACORD 5</td>
<td>Fibre Spent</td>
</tr>
<tr>
<td>BARACORD 5</td>
<td>Fibre Spent</td>
</tr>
</tbody>
</table>

**Water Based Systems**

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Antifreeze/Drilling Fluid</th>
<th>Lubricant</th>
<th>Drilling Fluid</th>
<th>Additive</th>
<th>Water Treatment System</th>
<th>Oilsystem</th>
<th>Water Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYMER</td>
<td>Linear base system</td>
<td>WATERFLOW</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>LOW PH</td>
<td>Low pH</td>
<td>WATERFLOW</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>PACIFIER</td>
<td>Porous media</td>
<td>WATERFLOW</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>GEN</td>
<td>Cotton Extract</td>
<td>BARO MILLING FLUID</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>SALT SYSTEM</td>
<td>Sodium carbonate</td>
<td>WATERFLOW</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
</tbody>
</table>

**OIL Based Systems**

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Antifreeze/Drilling Fluid</th>
<th>Lubricant</th>
<th>Drilling Fluid</th>
<th>Additive</th>
<th>Water Treatment System</th>
<th>Oilsystem</th>
<th>Water Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERMUL</td>
<td>Diesel base</td>
<td>INVERMUL</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>INVERMUL 506</td>
<td>Diesel base</td>
<td>INVERMUL</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
<tr>
<td>ENFORMUL 100</td>
<td>Diesel base</td>
<td>ENFORMUL</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
</tbody>
</table>

**E Other Based Systems**

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Antifreeze/Drilling Fluid</th>
<th>Lubricant</th>
<th>Drilling Fluid</th>
<th>Additive</th>
<th>Water Treatment System</th>
<th>Oilsystem</th>
<th>Water Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROFREE</td>
<td>Ester base</td>
<td>PETROFREE 180</td>
<td>Brie plus Fluid Lube</td>
<td>Celtone VII</td>
<td>Baro-Lube</td>
<td>Baro-Max</td>
<td>Baro-Flow</td>
<td>Baro-Flow CS</td>
</tr>
</tbody>
</table>
OIL SPILL CONTINGENCY PLAN
SUPPLEMENTAL DOCD
SOI OCS-G 0743, HIGH ISLAND 160
OFFSHORE TEXAS

In accordance with the requirements specified in 30 CFR 250 Subpart C of the Operating Regulations we submit for approval the following information:

30 CFR 250.42 (a) Oil Spill Trajectory Analysis

Reference: Oil Spill Risk Analysis: Central and Western Gulf of Mexico, Outer Continental Shelf, Lease Sales 147 and 150 (OCS Report, MMS 93-0019, page 73

This report shows the following probabilities of a major oil spill from the subject lease block (Launch Area 14) striking major land segment within 10 days.

<table>
<thead>
<tr>
<th>PROBABILITIES</th>
<th>LAND SEGMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11%</td>
<td>10</td>
</tr>
<tr>
<td>16%</td>
<td>11</td>
</tr>
<tr>
<td>04%</td>
<td>12</td>
</tr>
<tr>
<td>&lt;0.5%</td>
<td>Any Other Land Segment</td>
</tr>
</tbody>
</table>

Section III of our OSCP summarizes our strategies for protecting environmentally sensitive areas.

30 CFR 250.42(b) Equipment Identification and Response Times

The drilling plans proposed rely primarily on the Clean Gulf Associates (CGA) spill response equipment stored at the CGA sea base at High Island 355 and at the CGA land base in Galveston, Texas. Specific response equipment available is detailed in the Clean Gulf Associates Response Specifications Manual. Contractors available to operate CGA equipment include Garner Environmental Services (713-920-1300) and Riedel Environmental Technologies (713-479-5295) in Houston, Texas.
Land Based Response Times (in Hours)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI Spill Management Team Notification</td>
<td>0.50</td>
</tr>
<tr>
<td>Contractor Notification</td>
<td>0.50</td>
</tr>
<tr>
<td>Boat Procurement</td>
<td>6.00</td>
</tr>
<tr>
<td>Crew Procurement (Riedel Environmental Technologies 713-479-5295)</td>
<td>2.00</td>
</tr>
<tr>
<td>Dispatched to Galveston Terminal</td>
<td></td>
</tr>
<tr>
<td>Equipment Transit to Dock (Truck, Crane, etc.)</td>
<td>2.00</td>
</tr>
<tr>
<td>From CGA Base at Galveston to the Dock</td>
<td></td>
</tr>
<tr>
<td>Load Equipment on Boat</td>
<td>0.50</td>
</tr>
<tr>
<td>Inland Travel Time</td>
<td>2.00</td>
</tr>
<tr>
<td>Galveston Channel to Galveston Bay Sea Buoy at 29°9.48' X 94°25.89'</td>
<td></td>
</tr>
<tr>
<td>Open Water Travel Time</td>
<td>2.00</td>
</tr>
<tr>
<td>Sea Buoy @ Galv. Bay Entrance to HI 160 @ 29°14.52' X 94°07.75' (19.1 Statute Miles)</td>
<td></td>
</tr>
<tr>
<td>Deployment</td>
<td>0.50</td>
</tr>
<tr>
<td>Total Estimated time to Respond</td>
<td>12.0</td>
</tr>
</tbody>
</table>

* ( ) denotes not in critical path and not included in response time.

30 CFR 250.42(c) Dispersant-Use Plan

Our dispersant use plan and discussion of dispersant application methods and toxicity is outlined in Section VII of our OSCP. Also included is an outline for procedures to be followed to obtain approval for dispersant use.

30 CFR 250.42(d) Response Equipment Inspection and Maintenance

Halliburton Services has been contracted as a third party to maintain and inspect the equipment supplied by CGA. Details of their responsibilities are outlined in Section V of our OSCP.

30 CFR 250.42(e) Spill Detection and Notification Procedures

Procedures for early detection include daily visual observations. Also, all employees are instructed to report all sightings of oil on the water to their supervisor immediately. Procedures for timely notification including names and phone numbers of persons to contact are outlined in Sections II and IV of our OSCP.

30 CFR 250.42(f) Equipment, Materials and Supplies Inventory

The drilling plans proposed rely primarily on the Clean Gulf Associates (CGA) spill response equipment stored at the CGA sea base at High Island 355 and at the CGA land base in Galveston, Texas. Specific response equipment available is detailed in the Clean Gulf Associates Response Specifications Manual.
30 CFR 250.42(g) Specific Response Procedures

Procedures to follow upon a discovery of an oil spill are detailed in Section III. Membership of SOI’s oil spill response team are outlined in Section IV. Training and drills conducted for oil spill response team members is outlined in Section X of the OSCP. SOI will establish an operation center in accordance with the procedure in Section III of the OSCP, page 5. These facilities have adequate communications, hand-held radios and walkie-talkies to support the response team efforts. Also, we will make every attempt to reduce our projected response time by giving consideration to transporting oil spill response cleanup equipment from a Clean Gulf Associates base by the fastest available means to a vessel-loading location as close as practical to our proposed operations.

30 CFR 250.42(h) Oil Recovery Information

SOI has a Blanket Service Agreement with Newpark Services Inc. that includes the disposal of oil-contaminated material and soil.

30 CFR 250.42(i) Monitoring and Predicting Spill Movement

Through an agreement with Clean Gulf Associates, SOI has access to SpillNet, a computerized oil spill trajectory and response resource database.

30 CFR 250.42(j) Alaska Provisions for Ignition of an Uncontrolled Spill Source are Not Applicable
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>SHELL OFFSHORE INC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>HIGH ISLAND</td>
</tr>
<tr>
<td>BLOCK</td>
<td>135,136,160,161</td>
</tr>
<tr>
<td>LEASE</td>
<td>0742, 0743, 0741A, 0744</td>
</tr>
<tr>
<td>PLATFORM</td>
<td>JA</td>
</tr>
<tr>
<td>WELL</td>
<td>6</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>N 29 14 31</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>W 94 07 45</td>
</tr>
<tr>
<td>COMPANY CONTACT</td>
<td>G.B. SOUTHWORTH</td>
</tr>
<tr>
<td>TELEPHONE NO.</td>
<td>588-6676</td>
</tr>
<tr>
<td>REMARKS</td>
<td>A JACKET WITH TEST FACILITIES WILL BE INSTALLED. PRODUCTION WILL BE SENT VIA PIPELINE TO SOI'S HI 160&quot;A&quot; PLATFORM.</td>
</tr>
<tr>
<td>COMPANY</td>
<td>AREA</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>SHELL OFFSHORE INC.</td>
<td>HIGH ISLAND</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td>DRAUGHT OIL ENG</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>HP</td>
</tr>
<tr>
<td>PRIME 1600hp diesel</td>
<td>1650</td>
</tr>
<tr>
<td>PRIME 1600hp diesel</td>
<td>1650</td>
</tr>
<tr>
<td>AUXILIARY EQUIP=6000hp diesel</td>
<td>1435</td>
</tr>
<tr>
<td>OTHER (crane)</td>
<td>227</td>
</tr>
<tr>
<td>PIPELINE BURBAGE die</td>
<td>2477</td>
</tr>
<tr>
<td>OTHER (crane)</td>
<td>227</td>
</tr>
<tr>
<td>FACILITY</td>
<td>PRESSURE BARGE die</td>
</tr>
<tr>
<td>MATERIAL TUG die</td>
<td>2477</td>
</tr>
<tr>
<td>OTHER (crane)</td>
<td>227</td>
</tr>
<tr>
<td>PROCESS VENT</td>
<td>0</td>
</tr>
<tr>
<td>OIL BURN</td>
<td>0</td>
</tr>
<tr>
<td>WELL TEST</td>
<td>0</td>
</tr>
<tr>
<td>EXEMPTION CALCULATION</td>
<td>DISTANCE FROM LAND IN MILES</td>
</tr>
</tbody>
</table>

**BEST AVAILABLE COPY**
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>AREA</th>
<th>BLOCK</th>
<th>LEASE</th>
<th>PLATFORM</th>
<th>WELL</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>CONTACT</th>
<th>PHONE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL OIL &amp; G. INC.</td>
<td>HIGH ISLAND</td>
<td>125, 126, 128</td>
<td>2724, 2725, 2726</td>
<td>2627</td>
<td>45</td>
<td>14.2541</td>
<td>94.2647</td>
<td>A B</td>
<td>888-8768</td>
<td>A JACKET WILL BE INSTALLED, PRODUCTION WILL BE IN 3 TURNS PER YEAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAX. FUEL</th>
<th>ACT. FUEL</th>
<th>POUNDS PER HOUR</th>
<th>TONS PER YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Engines</td>
<td>HP</td>
<td>GAL/HR</td>
<td>GAL/D</td>
<td>MBTUM/R</td>
</tr>
<tr>
<td>PRIME MOVER-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>24</td>
</tr>
<tr>
<td>PRIME MOVER-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>24</td>
</tr>
<tr>
<td>AUXILIARY EQUIP-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VESSELS-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>PIPELINE</td>
<td>PIPELINE LAY BARGE diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>SUPPORT VESSEL diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>PIPELINE BURY BARGE diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>SUPPORT VESSEL diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>FAUCET</td>
<td>DERRICK BARGE diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>MATERIAL TUG diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>RECIP-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>RECIP-600hp diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OTHER (crane)</td>
<td>70</td>
<td>3.38</td>
<td>81.14</td>
<td>1</td>
</tr>
<tr>
<td>TURBINE</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RECIP 4 cycle lean nat gas</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RECIP 4 cycle lean nat gas</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RECIP 4 cycle lean nat gas</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RECIP 4 cycle lean nat gas</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RECIP 4 cycle lean nat gas</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BURNING of diesel</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

| MISC. | BPD | SCFFNR | COUNT | | |
|-------|-----|--------|-------| |
| TANK | 0 | 0 | 0 | 0 | |
| FLARE- | 0 | 0 | 0 | 0 | |
| PROCESS VENT- | 0 | 0 | 0 | 0 | |
| FUGITVES- | 0 | 1900 | 0 | 0 | |
| OIL WELM. | 0 | 0 | 0 | 0 | |
| WELL TEST | 0 | 0 | 0 | 0 | |

| 1995 YEAR TOTAL | 0.04 | 0.33 | 1.19 | 0.08 | 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

| EXEMPTION CALCULATION | DISTANCE FROM LAND IN MILES | 25.5 | |
|------------------------|-------------------------------|------| |

BEST AVAILABLE COPY
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>AREA</th>
<th>BLOCK</th>
<th>LEASE</th>
<th>PLATFORM</th>
<th>WELL</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>CONTACT</th>
<th>PHONE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL OFFSHORE INC</td>
<td>HIGH ISLAND</td>
<td>1190, 1200, 1210</td>
<td>0, 0, 0</td>
<td>0, 0</td>
<td>32 29 14.71</td>
<td>0.834045</td>
<td>0.834045</td>
<td>888-8875</td>
<td>888-8875</td>
<td>A JACKET WITH TEST FACILITIES WILL BE INSTALLED. PRODUCTION WILL BE 3</td>
</tr>
</tbody>
</table>

### EQUIPMENT

<table>
<thead>
<tr>
<th>Operation</th>
<th>Fuel Type</th>
<th>Total Pounds Per Hour</th>
<th>Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DRILLING</strong></td>
<td><strong>Prime Mover&gt;600hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Prime Mover&lt;500hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Prime Mover&lt;500hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Auxiliary Equip&lt;600hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Vessels&lt;600hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>PIPELINE</strong></td>
<td><strong>Pipeline Lay Barge diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>INSTALLATION</strong></td>
<td><strong>SUPPORT VESSEL diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Pipeline Bury Barge diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Support Vessel diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>FACILITY</strong></td>
<td><strong>Derrick Barge diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Material Tug diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>PRODUCTION</strong></td>
<td><strong>Recip&lt;600hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Recip&gt;600hp diesel</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Other (crane)</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Turbine nat gas</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Recip 3 cycle lean nat gas</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Recip 4 cycle lean nat gas</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Recip 3 cycle rich nat gas</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>Recip 4 cycle rich nat gas</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>MISC</strong></td>
<td><strong>BPO</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td><strong>SCF/RR</strong></td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

### 1997 YEAR TOTAL

<table>
<thead>
<tr>
<th>Yearly Total</th>
<th>Distance from Land in Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>25.5</td>
</tr>
</tbody>
</table>

### BEST AVAILABLE COPY

---

02/29/95 [MM WS W3] [INSTRUCTIONS PAGE 4]
SUPPLEMENTAL DEVELOPMENT OPERATIONS COORDINATION DOCUMENT
MUD AND CUTTINGS DISCHARGE VOLUMES
TYPICAL DEVELOPMENT
HIGH ISLAND BLOCK 160

All mud and cuttings will be discharged in compliance with the NPDES General Permit GMG 290103 for Discharge of Effluents. No fluids containing free oil will be discharged. Daily discharge rates will vary over the life of the well.

Estimated cuttings volume discharge is calculated as follows:

- 20" hole = gauge hole + 25% washout
- 13½" hole = gauge hole + 20% washout
- 9¾" hole = gauge hole + 15% washout

Estimated mud volume discharge is calculated as follows:

- 20" hole = gauge hole volume times 8
- 13½" hole = gauge hole volume times 6
- 9¾" hole = gauge hole volume times 4

<table>
<thead>
<tr>
<th>Days to Drill</th>
<th>Depth (ft.)</th>
<th>Depth BML (ft.)</th>
<th>Hole Size (in.)</th>
<th>Casing Size (in.)</th>
<th>Interval Length (ft.)</th>
<th>Cuttings Volume (bbls.)</th>
<th>Mud Volume (bbls.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000'</td>
<td>750'</td>
<td>20&quot;</td>
<td>16&quot;</td>
<td>1,000'</td>
<td>485</td>
<td>3100</td>
</tr>
<tr>
<td>2</td>
<td>3,000'</td>
<td>2,750'</td>
<td>13½&quot;</td>
<td>10¾&quot;</td>
<td>2,000'</td>
<td>425</td>
<td>2124</td>
</tr>
<tr>
<td>11</td>
<td>9,500'</td>
<td>9,250'</td>
<td>9¾&quot;</td>
<td>7&quot;</td>
<td>6,500'</td>
<td>708</td>
<td>2464</td>
</tr>
</tbody>
</table>

BEST AVAILABLE COPY

ATTACHMENT 8